
M O D U L A R S Y S T E M

PROGRAMMING WITH
C++

Osman AY
Muhammed Akif HORASANLI

h t t p : / / b o o k . z a m b a k . c o m

Copyright © 2006 Zambak Basým
Yayýn Eðitim ve Turizm Ýþletmeleri

Sanayi Ticaret A.Þ.

All rights reserved.
No part of this book may be

reproduced, stored in a retrieval
system, or transmitted in any form of
recording without the prior written

permission of the publisher.
Digital Assembly

Zambak Typesetting & Design

Page Design
Osman AY

Proofreader
Andy MARTIN

Publisher
Zambak Basým Yayýn Eðitim ve Turizm

Ýþletmeleri Sanayi Ticaret A.Þ.

Printed in
Ýstanbul - TURKEY

ISBN
978-975-266-245-2

DISTRIBUTION
ZAMBAK YAYINLARI

Bulgurlu Mah. Libadiye Cad. Haminne
Çeþmesi Sok. No. 20 34696

Üsküdar / ÝSTANBUL_______________________

Tel : +90-216 522 09 00 (pbx)
Fax : +90-216 443 98 39
http://book.zambak.com

1. Introduction To Programming

Understanding the Programming 6

The First C++ Program . 6

Breaking a Text into Multiple Lines 7

Basic Arithmetic . 8

Getting Data from the User (Input) 8

Arithmetic Operators . 9

Precedence of Arithmetic Operators

Fundamental C++ Variables 11

ASCII Codes . 13

Reading and Printing Strings 15

Initialization of Variables . 16

Using Text Files as Input and Output. 16

Summary. 18

Review Questions . 19

Programming Problems . 20

Flowchart Programming . 20

Understanding Flowchart Programming 21

Flowchart Symbols . 22

2. Decision Structures

Introduction. 24

The if structure . 24

The if/else structure . 25

Logical Operators . 27

The Conditional Operator (?) 28

The Switch Structure . 29

Summary. 31

Review Questions . 32

Programming Problems . 34

Flowchart Programming . 35

Making a Decision . 35

3. Repetition Structures

Repetition Structures (Loops) 38

The "while" Loop . 39

Increment and Decrement Operators 40

Counter-Controlled and Sentinel-Controlled

Repetitions . 43

The "do/while" Loop . 45

The "for" Loop . 47

Syntax of “for” statement 47

The "break" and "continue" Statements 53

Which loop should I use?. 54

Nested Loops . 54

Summary. 56

Review Questions . 57

Programming Problems . 58

Flowchart Programming . 61

Making Loops . 61

Pre-conditional Loops. 61

Post-conditional Loops 62

4. Functions

Introduction. 64

The Program Flow . 64

Some Pre-defined Functions 65

The Structure of a Function 67

Using Functions . 68

The Return Statement. 69

Passing Arguments to the Functions 70

Pass by Value . 71

Pass by Reference . 72

Scope and Lifetime . 74

Local Variables . 74

Global Variables . 74

Static Local Variables 76

Overloading Functions . 77

Summary. 79

Review Questions . 79

Programming Problems . 83

5. Arrays and Strings

Arrays and Vector Class . 86

Array Declaration and

Accessing Array Elements 86

Vector Manipulation . 88

Multidimensional Arrays . 90

Passing Arrays to Functions. 93

Searching Arrays . 95

Sequential (Linear) Searching 95

Binary Searching. 96

Sorting Arrays . 98

String Class . 100

Reading and Printing Strings. 100

String Manipulation . 101

Summary . 104

Review Questions . 105

Programming Problems 107

Flowchart Programming 110

Arrays and Strings . 110

6. Structs

Introduction . 112

Declaring Structs and Accessing Members . . . 112

Reading and Printing Structures 112

Hierarchical Structures . 114

Array of Structs . 120

Summary . 123

Review Questions . 123

Programming Problems 124

Flowchart Programming 126

Structures . 126

7. Object-Oriented Programming

Introduction . 130

Understanding Classes and Objects 130

Member Accessibility. 130

Class Definition . 131

Reading and Printing a Class 132

The Class Constructor and

Initializing Class Members 135

Object-Oriented Techniques 136

a. Encapsulation and Data Hiding 136

b. Inheritance . 136

c. Polymorphism . 136

Inheritance . 137

Polymorphism . 138

Operator Overloading . 141

Overloading Equal, Assignment, and

Smaller Than Operators. 141

Summary . 145

Review Questions . 145

Programming Problems 148

Answer Key

Index

Programming with C++6

Ibn Musa al-Khwarizmi
(Algorizm) (770 - 840 AD) was
born in Uzbekistan. His
parents migrated to Baghdad
when he was a child. He is
best known for introducing the
mathematical concept
Algorithm, which is so named
after his last name.

Al-Khwarizmi was one of the
greatest mathematicians who
ever lived. He was the founder
of several branches and basic
concepts of mathematics. He
is also famous as an
astronomer and geographer.
He is recognized as the
founder of Algebra, as he not
only initiated the subject in a
systematic form but also
developed it to the extent of
giving analytical solutions of
linear and quadratic
equations. The name Algebra
is derived from his famous
book Al-Jabr wa-al-
Muqabilah. He developed in
detail trigonometric tables
containing the sine functions.
Al-Khwarizmi also developed
the calculus of two errors,
which led him to the concept
of differentiation. He also
refined the geometric
representation of conic
sections.

Understanding the Programming
Programming is instructing a computer to perform a task for you with the help of a
programming language. The instructing part requires a step by step solution to the
task. This step by step solution is called an algorithm after the name of AlKharizmi.

People who make computer programs are called programmers. There are usually
two difficulties for computer programmers; Finding a feasible algorithm (algorithm
design) and writing the program (implementation). People who use the programs are
called end-users.

A computer program (software) contains a sequence of instructions for a computer.
One program is usually composed of three parts:

� Input part gets the data from an input device. Our programs, in the book, will get
the data from keyboard or from a text file.

� Process part is the hardest working part of the program. It carries out the
algorithm and finds out the desired result.

� Output part gives the result of the program. Our programs will display the result
on the screen or print it into a text file.

The First C++ Program
It is time to type our first C++ program. This program is going to prompt a line of
text that says "Hello World!". This program has no input and no process but only
output which says "Hello world!".

/*
PROG: C1_01hello.cpp
Understanding structure of a C++ program.
Printing a line of text.
Using comments.
*/

#include <iostream>
//includes the declarations of the basic standard input-output
//library in C++, and its functionality is going to be used later
//in the program.

using namespace std;
//Namespaces are containers that contain the declarations of all
//the elements of the standard C++ library

int main() //the only function in this program.
{

cout <<"Hello world!"; //print "Hello world!". cout is
//declared in the iostream standard
//file within the std namespace

system("pause"); //Wait until user hits a key and

All the programs in this book
have been compiled with
Microsoft Visual Studio 2005.
You can also compile them
with GNU C++ (g++) in
Linux environment, or use free
Windows IDEs like Dev-C++
(http://www.bloodshed.net/de
vcpp.html) and CodeBlocks
(http://www.codeblocks.org).

7Introduction to Programming

//displays a message
return 0; //the main function ends properly

}

Hello world!Press any key to continue . . .

C++ programs consist of one or more modules. Each module performs a specific
task. These modules are called functions. The "Hello World!" program has only one
module that is the main function. Any C++ program is been started to execute from
the main function so each program must have this function.

Before the functions, the program has an "include" and "using namespace" part.
This part declares the libraries where the C++ commands we are going to use in
the program are defined.

Like each sentence ends with a period ('.'), each C++ statement ends with a
semicolon character (';').

Besides the program codes, the program has some comments. C++ has two ways
to insert comments into source code: Single line comment and multiple line
comment. Single line comments are written behind the double slash characters
("//") and multiple line comments are enclosed between slash and asterisk ("/*")
and asterisk and slash ("*/") characters. Comments are ignored by the compiler.

Breaking a Text into Multiple Lines
Use end of line "endl" or new line 'n/' characters with in a cout statement to make
a new line. 'n/' characters are inherited from C programming. We prefer to use "endl"
notation.

/*
PROG: C1_02hello.cpp
Using endl.
*/
#include <iostream>
using namespace std;

int main()
{

cout <<"Hello world!"<<endl; //move the cursor to the
//beginning of the next line.

cout <<"This is my C++ program."<<endl<<endl;
system("pause");
return 0;

}

Hello world!
This is my C++ program.

Press any key to continue . . .

cout<<“Hello ”<<endl;
and
cout<<“Hello \n”;
statemens print the same
output.

Flowchart of the Program
“01hello”.

A flowchart is a visual
representation of the
algorithms. Is is made up of a
few symbols: terminal, input,
process, decision, output, and
connector.

Include precise comments in
your program to make it self-
documentary and easy to
read. Usually the reading time
for programs is much more
than the writing time.

Programming with C++8

Basic Arithmetic
Any statement enclosed with double quotes (" ") in a cout statement is displayed
directly and any arithmetical or logical expression is evaluated and then the result
is displayed. The program below shows the result of the expression 3 + 5.

/*
PROG: C1_03sum.cpp
*/
#include <iostream>
using namespace std;

int main()
{

cout <<"5 + 3 = "<<5+3<<endl; //calculate and print the sum
system("pause");
return 0;

}

5 + 3 = 8
Press any key to continue . . .

Getting Data from the User (Input)
Programs usually read the input data from the standard input (keyboard) or from
an input file. "cin" command is used to read data from the standard input. The
following program reads two integers, calculates their sum and then outputs the
result.

int num1, num2, sum; declares three variables. The names of the variables are
num1, num2 and sum. A variable is a named storage location that can contain
data that can be modified during program execution. This declaration specifies
that those variables can contain integer values (-45, 0, 11, 37, etc.). "num1" and
"num2" will be used to store the input data, and "sum" will be used to keep the
sum of input values in the program.

/*
PROG: C1_04sum.cpp
Getting data from keyboard, making sum of two integers,
understanding variables, and using assignment operator.
*/
#include <iostream>
using namespace std;

int main()
{

int num1, num2, sum; //num1, num2 and sum are three
//variables type of integer.

cout<<"Enter two integers:"<<endl;
cin >> num1 >> num2; //cin reads two values for

//num1 and num2.
sum = num1 + num2; //sum gets the value of num1+num2.

Flowchart of the Program
“03sum”

Flowchart of the Program
“04sum”

9Introduction to Programming

cout <<"Sum is "<<sum<<endl;
system("PAUSE");
return 0;

}

Enter two integers:
5 7
Sum is 12
Press any key to continue . . .

sum = num1 + num2; first computes the sum of the values of num1 and num2 then
assigns the result to the variable sum. We have used an arithmetic operator (+) and
assignment operator (=) in this statement.

Arithmetic Operators

Operation Operator Example

Addition + 5 + 4 = 9

Subtraction - 5 - 4 = 1 and 4 - 5 = -1

Multiplication * 5 * 4 = 9

Division (integer) / 15 / 3 = 5 and 12 / 5 = 2

Modulus % 12 % 5 = 2, 15 % 3 = 0, and 3 % 5 = 3

C++ provides assigment
operator and compount
assignment operators(+=,
-=, *=, /=, %=, >>=,
<<=, &=, ^=, |=). For
example sum=sum+5 can be
written as sum+=5. The
assigment operator can be
used for chain assignment
processes. For example a=3;
and b=3; can be written as
a=b=3;

Beside the assignment and
the arithmetic operators C++
has many others. The most
common C++ operators are:

� assignment
� arithmetic
� increment and decrement
� string concatenation
� relational
� logical
� conditional
� bitwise

/*
PROG: C1_05calculator.cpp
Demonstrating arithmetic operators. Calculating sum, difference,
product, quotient, and remainder. Using (float) casting to get
floating-point quotient.
*/
#include <iostream>
using namespace std;

int main()
{

int num1, num2;

cout <<"Enter two integers:";
cin >> num1 >> num2;

cout <<num1 <<"+"<<num2<<"="<<num1+num2<<endl;
cout <<num2 <<"+"<<num1<<"="<<num2+num1<<endl<<endl;

cout <<num1 <<"-"<<num2<<"="<<num1-num2<<endl;
cout <<num2 <<"-"<<num1<<"="<<num2-num1<<endl<<endl;

The bitwise shift operators
shift their first operand left
(<<) or right (>>) by the
number of positions the
second operand specifies.
Shifting one position left is
equivalent to multiply the
number by 2, and shifting one
position right is equivalent to
divide the number by 2.

(4<<3) yields 32 and
(12>>2) yields 3.

Programming with C++10

cout <<num1 <<"*"<<num2<<"="<<num1*num2<<endl;
cout <<num2 <<"*"<<num1<<"="<<num2*num1<<endl<<endl;

cout <<num1 <<"/"<<num2<<"="<<num1/num2<<endl;
cout <<num1 <<"/"<<num2<<"="<<(float)num1/num2<<endl;
cout <<num2 <<"/"<<num1<<"="<<num2/num1<<endl;
cout <<num2 <<"/"<<num1<<"="<<(float)num2/num1<<endl<<endl;

cout <<num1 <<"%"<<num2<<"="<<num1%num2<<endl;
cout <<num2 <<"%"<<num1<<"="<<num2%num1<<endl<<endl;

system("PAUSE"); return 0;
}

Enter two integers:7 3
7+3=10
3+7=10

7-3=4
3-7=-4

7*3=21
3*7=21

7/3=2
7/3=2.33333
3/7=0
3/7=0.428571

7%3=1
3%7=3

Press any key to continue . . .

Precedence of Arithmetic Operators

� Parentheses ("()") are evaluated first. The expression in the innermost
parentheses is evaluated first if the parentheses are nested.

� After parentheses multiplication (*), division (/), and modulus (%) operators are
evaluated.

� Addition (+) and subtraction (-) are evaluated last.

� The operators with the same precedence are evaluated left to right.
3 * 5 + 2 = 17
3 * (5 + 2) = 21
5 + 3*4 - 2 = 15
6*8/4 = 12
6*(8/4) = 12

Flowchart of the Program
“05calculator”

11Introduction to Programming

Fundamental C++ Variables
A variable is a memory place in which you can store a value and from which you can
later retrieve that value. Notice that this temporary storage is used only during the
execution of the program.

The following table summarizes the fundamental C++ variables.

Make a program to calculate area and perimeter of a rectangle.

Input: length of side1 and length of side2.

Process: area = side1*side2
Perimeter = 2*(side1+side2)

Output: area and perimeter

Exercise: Rectangle

side1

side2

Type
Size in
Bytes

Values

integer variables

unsigned short int 2 0 to 65,535

short int 2 -32,768 to 32,767

unsigned int 4 0 to 4,294,967,295

int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

long int 4 -2,147,483,648 to 2,147,483,647

long long int 8
9.223.372.036.854 to

9.223.372.036.853

floating-point
variables

float 4 1.2e-38 to 3.4e38

double 8 2.2e-308 to 1.8e308

logical variable bool 1 true or false

character variable char 1 256 character values

� Integer variables store whole numbers (-4, 3, 51, etc). Unsigned integer type
variables cannot have negative values, whereas other integer type variables (signed
integers) may have negative and positive values.

� Floating-point variables store decimal numbers (3.5, -5,123, 4.0, etc).

Always name your variables
with a great care, and explain
them thoroughly.

Programming with C++12

� Logical variables store the result of logical expressions and get only the values
true and false. False is represented with 0 and true is represented with a positive
value (usually 1) in C++. Logical expressions are usually used in decision and
repetition structures to control the flow of the program.

� Character variables are used to store characters (letters, numbers, punctuation
characters, etc). Characters are enclosed with a pair of single quotes in C++, like
'a', 'B', '7', '+', etc.

The sizes of variables might be different from those shown in the table, depending
on the compiler and the computer you are using. Use sizeof() operator to measure
the sizes of variable types in your system. The sizeof() operator returns the number
of bytes in variable or type.

/*
PROG: C1_06sizeof.cpp
C++ variable types and their sizes in bytes
*/
#include <iostream>
using namespace std;
int main()
{

cout <<"int = "<<sizeof(int)<<endl;
cout <<"short int = "<<sizeof(short int)<<endl;
cout <<"long int = " <<sizeof(long int)<<endl;
cout << "long long int =" <<sizeof(long long int)<<endl;

cout <<"float = "<<sizeof(float)<<endl;
cout <<"double ="<<sizeof(double)<<endl;
cout <<"long double ="<<sizeof(double)<<endl;

cout <<"bool ="<<sizeof(bool)<<endl;

cout <<"char ="<<sizeof(char)<<endl;

system("pause"); return 0;
}

int = 4
short int = 2
long int = 4
long long int =8
float = 4
double =8
long double =8
bool =1
char =1
Press any key to continue . . .

13Introduction to Programming

Make a program to calculate area and circumference of a circle.

Input: radius of circle.

Process: area = PI*radius*radius

circumference = 2*PI*radius

Output: area and circumference

PI is an arithmetical constant whose approximated value is 3.14159. It is defined
in C++ as a constant as PI. Add the following lines at the beginning of your
program to use this constant in your program:

#define _USE_MATH_DEFINES
#include <cmath>

Exercise: Circle

radius

Make a program that gets two numbers (let's say A and B) and then displays
1 if the first number is bigger then second one, otherwise displays 0.

Input: Two numbers A and B.

Process: Comparing A and B. Use bigger than operator in the comparison
(A>B).

Output: 1 if the first number is bigger, 0 if the first number is not bigger.

Exercise: 1 or 0

Visit the site
http://www.asciitable.com to
see the ASCII table.

ASCII Codes
There are only 1s and 0s in a computer system. Computers work with binary
numbers. We can convert binary numbers into their equivalent decimal numbers that
are the numbers we use in our daily life. But what about other characters, letters,
punctuation marks, and special characters. How can we present them to the
computers?

Character encoding (character set) tables are used to represent the characters with
numbers. ASCII (1963) and EBCDIC (1964) are two international standard character
sets.

ASCII (Pronounced ask-ee) is an acronym for American Standard Code for

Information Interchange. In ASCII, every letter, number, and punctuation symbol has

EBCDIC (Extended Binary
Coded Decimal Interchange
Code) is an 8-bit character
encoding (code page) used
on IBM mainframe operating
systems as well as IBM
minicomputer operating
systems. It is also employed
on various non-IBM platforms
such as Fujitsu-Siemens and
Unisys MCP. Although it is
widely used on large IBM
computers, most other
computers, including PCs and
Macintoshes, use ASCII
codes.

Like variables, constants are
data storage locations. Unlike
variables, constants don't
change. You must initialize a
constant when you create it,
and you cannot assign a new
value later.

Most of the common
constants have already been
defined in C++. For the user
defined constants, there are
two main techniques used to
create constant values:

a. using the define keyword
#include <iostream>
#define PI 3.14
.
.
b. using the const keyword
.
.
int main()
const float PI = 3.14;
.
.

Programming with C++14

a corresponding number, or ASCII code. For example, the character for the number
1 has the code 49, capital letter A has the code 65, and a blank space has the code
32. This encoding system not only lets a computer store a document as a series of
numbers, but also makes it possible to transfer data from one computer to another.

In an ASCII file, each alphabetic, numeric, or special character is represented with a
7-bit binary number (a string of seven 0s or 1s). 128 possible characters are defined.
There are also ASCII extensions in use which utilize 8 bit codes to represent
international characters in addition to the standard ASCII scheme.

cout prints the ASCII character of an ASCII code with “char” casting. The following
program reads an ASCII code (an integer) and prints its character.

/*
PROG: C1_07ascii.cpp
Displaying the ASCII character of an ASCII code.
*/
#include <iostream>
using namespace std;

int main()
{

int code;
cout <<"Enter the ASCII code [between 0 and 127] ";
cin >> code;

cout <<"The ASCII character of "<<code<<" is "
<<(char)code<<endl; //print the character not number

system("pause");
return 0;

}

Enter the ASCII code [between 0 and 127] 75
The ASCII character of 75 is K

Press any key to continue . . .

Make a program to print code of an ASCII character.

Input: an ASCII character.

Output: ASCII code of the input character.

Sample Output:

Enter an ASCII character A

The ASCII code of A is 65
Devam etmek için bir tusa basin . . .

Exercise: ASCII Character

15Introduction to Programming

Reading and Printing Strings
In programming, a string is an ordered series of characters. You can consider them
words and sentences. They are represented with enclosed double quotes in a C++
program code, like "Hello!" or "I am learning C++".

C++ provides string class for string operations. S string class is defined in the
<string> standard library. The instances of variable types are called variables,
whereas the instances of classes are called objects. We are going to study classes
and objects in the later chapters of this book.

cin reads only the first word of a string, and cout prints all characters of a string. The
string class has its own methods (functions) for string manipulation. We are going to
study string class later in this book.

The '+' is called string concatenation operator with strings and is used to
concatenate two string objects. Do not confuse the string concatenation and
arithmetic addition operator. Examine the following two operations.

57 + 33 is 90 Here '+' is addition operator.

"57" + "33" is "5733" Here '+' is string concatenation operator.

The following example reads name and surname of the user, and then prints a hello
message.

/*
PROG: c1_08string.cpp
Reading a word. Using the string data type and the string
concatenation operator (+).
*/
#include <iostream>
#include <string> //string library
using namespace std;
int main()
{

string firstname, surname; //two objects of string class

cout << "Enter your firstname."<<endl;
cin >> firstname;
cout << "Enter your surname."<<endl;
cin >> surname;
//string concatenation
cout <<"Hello "<<firstname + " " + surname<<endl;
system("pause"); return 0;

}

Enter your firstname.
Alan
Enter your surname.
Smith
Hello Alan Smith
Press any key to continue . . .

Class and object are two main
terms of Object Oriented
Programming. Objects are the
real elements in the program
and classes are like a
blueprint of the objects.
Whenever we need an object
we can create it from its class.

Flowchart of the Program
“08string”

Programming with C++16

Initialization of Variables
You can give the initial values to the variables during the declaration in C++. The
following program demonstrates how to declare different type of variables. Notice
that string objects can be initialized in two ways. You may use either of them in your
programs.

/*
PROG: c1_09init.cpp
Initializtion of variables.
*/
#include <iostream>
#include <string>
using namespace std;
int main()
{

string st1("I am learning "); //st1 is been initialized to
//"I am learging "

string st2 = "C++"; //st2 is been initialized to "C++"
int int1 = 8, int2 = 5; //int1 is been initialized to 8, and

//int2 to 5
float flt1 = 7.5, flt2 = 3.9; //flt1 is been initialized to

//7.5, and flt2 to 3.9
char ch1 = 'A'; //ch1 is been initialized to 'A'
bool bl1 = true, bl2 = false; //bl1 is been initialized to

//true, and bl2 to false

cout<<"st1 + st2 is "<<st1 + st2<<endl;
cout<<"int1 + int2 is "<<int1 + int2<<endl;
cout<<"flt1 + flt2 is "<<flt1 + flt2<<endl;
cout<<"ch1 is "<<ch1<<endl;
cout<<"bl1 is "<<bl1<<endl;
cout<<"bl2 is "<<bl2<<endl;
system("pause"); return 0;

}

st1 + st2 is I am learning C++
int1 + int2 is 13
flt1 + flt2 is 11.4
ch1 is A
bl1 is 1
bl2 is 0
Press any key to continue . . .

Using Text Files as Input and Output
C++ provides two functions to read from a text file and to write into a text file. Those
functions are ifstream() and ofstream(). Both functions are declared in the
<fstream> header. ifstream opens an existing input file whereas, ofstream creates
or recreates and opens the output file.

17Introduction to Programming 17

Data input and output operations on text files are performed in the same way we
operated with “cin” and “cout”. ifstream() function defines an identifier to read from
a file, and the name and location (path) of that file. In the same way, ofstream()
function defines an identifier to write into a file, and the name and location (path) of
the file. I prefer to use "fin" and "fout" identifiers in my programs fin takes the role of
cin and fout takes the role of cout. After you have finished with the input and output
files you should close them so that their resources become available again for the
system. close() function is used to close the open files.

The following program read two integers (num1 and num2) from the file numbers.in.
Computes sum, difference, product and quotient of those two numbers and then
writes the result into the file numbers.out.

/*
PROG: c1_10file.cpp
Using input and output files.
*/
#include <fstream>
using namespace std;

int main()
{

ifstream fin("numbers.in"); //open input file
ofstream fout("numbers.out");//create and open output file

int num1, num2;
fin >>num1 >>num2; //read two integers from the input file

//Make arithmetical calculations and write the result into
//the output file
fout <<"sum is "<<num1+num2<<endl;
fout <<"difference is "<<num1-num2<<endl;
fout <<"product is "<<num1*num2<<endl;
fout <<"integer quotient is "<<num1/num2<<endl;
fout <<"floating-point quotient is "<<(float)num1/num2<<endl;

fin.close(); //close the input file
fout.close(); //close the output file

system("PAUSE");
return 0;

}

5 3 sum is 8
difference is 2
product is 15
integer quotient is 1
floating-point quotient is 1.66667

numbers.in numbers.out

Flowchart of the Program
“10file”

Programming with C++18

An algorithm is a set of ordered steps for solving a particular problem. A computer program is series of
instructions or statements, in a form acceptable to a computer, to cary out an algorithm. A programming
language is a human-created language that translates instructions from programmers to computers.

C++ is an object-oriented programming (OOP) language and the primary programming languages for
computers of today. Any C++ program consists of modules that are called functions. The primary function of
a C++ program is “main”. C++ uses cout and cin for printing and getting the data.

Operators are symbols (such as +, *, /) used to perform arithmetic, relational, logical, assignment, string,
bitwise etc. operations.

A variable is a named item used to represent data that can be changed while the program is running. Like a
variable, a constant is a named item but it has a fixed value that does not change.

ASCII (American Standard Code of Information Interchange) is an international code standard for
representation of characters, numbers, symbols and control characters, for use in data communication and
data storage. ASCII text does not include special formatting features and therefore can be exchanged and read
by most computer systems.

A string is a series of alphanumeric characters of any length. Strings are enclosed by double quotes in C++.

File processing consists of creating a file, storing data into a file, and retrieving data from a file. C++ performs
file processing with ifstream() and ofstream() functions that are defined in the <string> header file.

SUMMARY

1919Introduction to Programming

REVIEW QUESTIONS

1. What is the output of the following program?
#include <iostream>
using namespace std;
int main()
{

cout <<"I am ";
cout <<"learning "<<endl<<"C++";
return 0;

}

2. What is the output of the following program?
#include <iostream>
using namespace std;
int main()
{

int a=1, b=2;
cout <<a<<" "<<b;
a = a+b;
b = a+b;
cout <<b<<" "<<a;
return 0;

}

3. Calculate the values of variables in the given lines
and complete the table.
#include <iostream>
using namespace std;
int main()
{

int a=1, b=2, c=3;
a =b + c; b =a - b*c;
c =(a + c)/(c - b); a=a%b/c; b=-b;
return 0;

}

4. What are the most suitable variable types for the
given data?

Line a b c

Ýnt a=1, b=2, c=3; 1 2 3

a = b + c; b = a - b*c;

c = (a + c)/(c - b);
a = a%b/c; b = -b;

Data Variable Type

Age of a person unsigned short

Name of a person

Gender of a person ('F' or 'M')

State of a electrical switch
(ON or OFF)

Number of the passengers in
an airplane

Area of a circle

Temperature

20

1. (Sum of digits) Make a program that reads a three-digit integer from the file "number.in" and then
calculates sum of the digits and writes the result into the file "sum.out". Use the format of the sample
output in the file "sum.out". (Hint: Use the modulus (%) and integer division (/) operators.)

2. (Swapping) You are given two integer variables, let's say a and b. How can you interchange the values
of those two variables? In other words, a should get the value of b, and b should get the value of a.

a. Use a temporarily third variable

b. Do not use any additional variable

c. Use the swap function (swap(a, b);).

3. (To Upper) Make a program that reads a letter from the keyboard and then converts the letter to upper
case, if the letter is lower case.

a. Change the ASCII code of the letter.

b. Use the toupper function (a = toupper(a);).

PROGRAMMING PROBLEMS

423 Sum of the digits is 4+2+3 = 9

number.in sum.out

Programming with C++20

FLOWCHART PROGRAMMING (OPTIONAL)

Understanding Flowchart Programming
Flowchart is a symbolic language to express algorithms. It visually presents the
solution of a specific task.You have already seen flowcharts of some sample
programs in this book and you became familiar with some of the flowchart symbols.

Traditionally people begin with flowchart programming, learn the fundamental
techniques of programming (such as input, output, making calculations and
comparisons, decisions, repetition) and then start to write their programs with a
programming language. When starting the programming directly with a
programming language will face you two difficulties: learning the syntax of the
programming language and learning the programming techniques.

We have started the programming directly with a programming language (C++) in
this book, because the syntax of C++ is self-explanatory and easy to understand
for English speaking people.

21Introduction to Programming

You will find an IDE (Integrated Development Environment) flowchart programming
(FCPRO) in the Web site of the book (http://book.zambak.com) where you can draw,
run, trace the variables, and debug your flowcharts. FCPRO was made in C++ by
Cosmin Raianu who was one of my best students from Romania.

By Using FCPRO, You Can Do The Following:

� Design your own flowcharts

� Save your flowcharts to disk and open them whenever you need to.

� Export your flowcharts as BMP files.

� Run your flowcharts, reading the input from the user and displaying the output.

� Debug your flowcharts, by stepping through them and inspecting the values of
variables and expressions by using the Watches.

� Compile your flowcharts into standalone Win32 Console applications.

� Edit, save and open programs written in a special pseudocode.

� Convert flowcharts to their corresponding pseudocode programs and vice versa.

� Learn all about flowcharts, pseudocode and the way FCPro works by using the
user-friendly integrated help system.

Refer to the FCPRO built-in
help to get detailed
information about flowchart
programming and to learn
how to use FCPRO.

Programming with C++22

Flowchart Symbols
Terminal (Start, End)

The terminal symbol marks where the flowchar starts and where it
ends. Usually a starting terminal contains the word “START” or
“BEGIN”, and an ending terminal contains the word “END” or
“FINISH”.

Input (Get, Read)

The input symbols are used to get data from the user. The data is
stored in variables. You don’t have to declare the type of the
variables in FCPro. FCPro determines the type of the variables
according to the first value you assign them.

Process (Do)

A process symbol denotes that a process (arithmetic, logic, or
assighment) will be carried out.

Decision (If)

It is a decision making and branching symbol. You can control the
flow of the program by means of the decision symbol. That is, you
can set loops and execute either part of the program depending
of the result of the logical expressin in the decision symbol.

Output (Print, Display)

An output symbol is used to print a message, values of variables
and results of expressions.

Flow Line (Arrow)

Lines indicate the sequence of steps and the direction of flow.

Connector (Joining)

The connector symbol connects two parts of a flowchart. It is
usually used to connect two pages of a flowchart when you are
manually drawing a flowchart on paper. In FCPro, It is used to
prevent an arrow intersect with a flowchart symbol for a better
view.

Draw and run all the flowchart programs (01hello, 03sum, 04sum,
05calculator, 07string, 08file) that are given in this chapter in FCPRO.

Exercise: Flowcharts

The shapes of the flowchart
symbols can be slightly
different in some other
sources.

FCPro Arithmetic Operators:

+ : Addition

- : Subtraction

* : Multiplication

/ : Integer Division

// : Fractional Division

% : Modulus

Programming with C++24

Introduction
In our daily life, we often encounter many options and we have to select one. Our
selections decide the way of our life. In every separation point we make our decision
and go on our way. While programming, we usually need to decide the path of the
program flow according to the parameters and conditions. Actually the ability of
making decision is one of the key points of intelligent programming. Thanks to
control structures (decision & repetition) we are able to evaluate the condition and
select the flow path. We have 4 types of decision structures in C++:

� If

� If/Else

� Conditional Operator (?)

� Switch

The If/else statement chooses between two alternatives. This statement can be used
without the else, as a simple if statement. Another decision statement, switch,
creates branches for multiple alternative sections of code, depending on the value
of a single variable. Finally, the conditional operator is used in specialized situations.

The if structure
The "if structure" is used to execute statement(s) only if the given condition is
satisfied. The Computer evaluates the condition first, if it is true, statement is
executed if not the statement is skipped and the program continues right after this
conditional structure. This can be illustrated as:

The following code prints "passed" or "failed" depending on the average of the
student by using two separate if structures.

Relational and Equality
Operators tests some kind of
relation between two entities.
These include numerical
equality and inequalities.
These operators usually return
true or false, depending on
whether the conditional
relationship between the two
operands holds or not. An
expression created using a
relational operator forms what
is known as a condition.
Decision structures evaluate
the conditions.

C++ Relational and Equality
Operators are:

> : Greater

>= : Greater or Equal

< : Smaller

<= : Smaller or Equal

== : Equal

!= : Not Equal

25Decision Structures 25

if (average>60)
{

cout<<"passed"; //if the average is greater than 60
//print passed.

}

if (average<=60)
{

cout<<"failed"; //if the average is less than or equal
//to 60 print failed.

}

The first if structure checks whether the average is greater than 60, if so writes
"passed" to the output. The second if structure checks whether the average is less
than or equal to 60 if so writes "failed" to the output.

If we have a single statement in a "if" then it can be written without braces; but if we
have a compound statement to be executed we need to enclose them between
braces ({ }).

The if/else structure
We can additionally specify what we want to do if the condition does not hold with
else. While the if statement lets a program decide whether a statement or block is
executed, the if/else statement lets a program decide which of two statements or
blocks is executed. This can be illustrated as :

If any student passed, namely the average is bigger than 60, it is unnecessary to
check if he failed. If he passed it is obvious that he didn't fail, and in the same manner
if he didn't pass it is obvious that he failed.

Truth in C++

C++ has a very simple logic
to cope with truth. Any value
other than zero is regarded as
true. Thus 1 and -2 are both
true just like 0.0001.Since they
are all different from zero. In
the same logic 0, 0.0 or +0.0
and -0 are all accepted as
false.

Using “if” in a Flowchart

Programming with C++26

if (average>60)
cout<<"passed"; //if the average is greater than 60

prints passed.
else

cout<<"failed"; //if condition does not hold then
prints failed.

Write a program that decides if a number is odd or even.

Input : An integer.

Output : "Odd" or "Even".

Hint : Even numbers are divisible by 2. That is to say when an even number
is divided by 2, the remainder is 0. Use modulus operator (%) to
obtain the remainder.

Exercise: Odd or Even

Let's improve our average example. What if we have an average value less than 0?
As a programmer we should always keep in mind the unexpected cases. We would
be able to respond to the user that any value less than 0 is not valid.

if (average>60)
{

cout<<"Passed";
}
else if (average<0)
{

cout<<"Wrong Input";
}
else
{

cout<<"Failed";
}

The if/else structure above checks the first condition, if it is satisfied, prints "Passed"
and skips the rest of the structure. If the first condition is not satisfied, the second
condition is checked, and so on. If none of the conditions is held, the last statement
is executed.

Write a program that decides the sign of a number.

Input: An integer.

Output: Positive, Negative or Zero.

Exercise: Sign

Using “if/else” in a Flowchart

27Decision Structures

Logical Operators
Logical operators simplify nested if and if/else structures. They combine multiple
logical expressions and return a single result (True or False). There are three logical
operators in C++:

� ! (Not)

� && (And)

� || (Or)

! (Logical Not) operator has only one operand (unary operator) and returns the
opposite of it. Not Operator gives true if the operand is false, and gives false if the
operand is true. For example:

!(5 > 7) //evaluates to true.
!true //evaluates to false.

&& (Logical And) operator has two operands (binary operator). It returns true only if
both operands are true, and returns false otherwise. So we may need this operator
when we have to perform a task if two conditions are fulfilled at the same time. For
example we want to determine if a given integer (num) is divisible by 3 and 7.

if ((num % 3 == 0) && (num % 7 == 0))
cout<<"It is divisible by 3 and 7";

|| (Logical Or) operator has two operands. It returns false if both operands are false,
and returns true otherwise. It can be used in a case if at least one of two conditions
has to be true to perform a task. For example we want to check if a number is
divisible by 3 or 7.

if ((num % 3 == 0) || (num % 7 == 0))
cout<<"It is divisible by 3 or 7";

X !X

0 1

1 0

The Truth Table of the NOT
Operator (!)

X Y X && Y

0 0 0

0 1 0

1 0 0

1 1 1

The Truth Table of the AND
Operator (&&)

X Y X && Y

0 0 0

0 1 1

1 0 1

1 1 1

The Truth Table of the OR
Operator (||)

Write a program that checks if an entered character is between 'a' and 'z' or 'A'
and 'Z'. Namely check if it is a letter or not.

Input: One character.

Output: "IT IS A LETTER" or "IT IS NOT A LETTER".

Exercise: Letter

Let's have a look how to use logical operators to determine whether a given year is
a leap year. Leap years are years with an extra day (February 29); this happens
almost every four years. Generally, leap years are divisible by four, but century years
are special, they must also be divisible by 400. Given a year decide whether it is a
leap year or not.

We know that the set of numbers divisible by 400 is a subset of the set of numbers
divisible by 100. And the set of numbers divisible by 100 is a subset of numbers
divisible by 4.

U = All of the years

C= Years divisible by 4

B= Years divisible by 100

A= Years divisible by 400

From the description it is clear that if the number is in the red area than it is a leap
year otherwise it is not. We can describe the red area as (A or (C and (Not B)))

if ((year%400==0)||((year%4==0)&&(!(year%100==0))))
cout << "Leap Year";

else
cout << "Not a Leap Year";

Programming with C++28

C
U

A
B

Implement the leap year problem without logical operators (by nested if/else)

Input: An integer for year value.

Output: "IT IS A LEAP YEAR" or "IT IS NOT A LEAP YEAR".

Exercise: Leap Year

The Conditional Operator (?)
C++ provides another selective operator that can be an alternative of simple if/else.
If we are choosing from two options based on a condition we can simply implement
it with a conditional operator. Let's implement our "pass" "fail" example with "?".

With if/else With ?

if (average>60)
cout<<"passed";

else
cout<<"failed";

cout<<((average>60) ? "passed" : "failed");

Leap years are needed so
that the calendar is in
alignment with the earth's
motion around the sun.

29Decision Structures

Here condition (average > 60) is evaluated. If it is true, "passed" is written; If not,
"failed' is printed.

Our leap year problem can be written as:

february=((year%400==0)||((year%100!=0)&&(year%4==0))) ? 29 : 28;

If the condition is true it is a leap year, if false it is not.

The Switch Structure
Switch allows us to select from multiple choices based on constant values. If we are
to use several "if" and "else if" instructions to check constant values it is best to
implement it by using switch. For example we are getting the month number from the
user and printing the month name on the screen

/*
PROG: c2_01switch.cpp
Read the order of a month and prints its name.
*/
int main()
{

int month;
cout<<"enter the month number";
cin>>month;
switch (month) {

case 1 :
cout<<"it is january";
break;

case 2 :
cout<<"it is february";
break;

case 3 :
cout<<"it is march";
break;

case 4 :
cout<<"it is april";
break;

case 5 :
cout<<"it is may";
break;

case 6 :
cout<<"it is june";
break;

case 7 :
cout<<"it is july";
break;

case 8 :
cout<<"it is august";
break;

case 9 :

Programming with C++30

cout<<"it is september";
break;

case 10 :
cout<<"it is october";
break;

case 11 :
cout<<"it is november";
break;

case 12 :
cout<<"it is december";
break;

default :
cout<<"wrong input";

}

Switch evaluates the value of expression and performs all of the instructions starting
from the true case of the expression's value till the ending brace.

If none of the cases has the value of expression then instructions under default part
are executed. You can have only one default statement in a switch statement block.

The break statement at the end of the case statement tells C++ to exit the switch
statement. C++ does not generate an error message if you omit a break statement.
However, if you omit it, C++ executes all the statements in the following case
statement, even if that case is false. In nearly all circumstances, this is not what you
want to do.

Sometimes we need to group the cases since we have the same operation for some
values. This can be understood better by an example. Again we are getting the
month number from the user but this time printing how many days this month has to
the screen.

/*
PROG: c2_02months.cpp
Read the order of a month and print how many days it has.
*/

switch (month)
{

case 2 : cout<<"it has 28 days"; break;
case 4 : case 6 : case 9 : case 11:

cout<<"it has 30 days"; break;
default : cout<<"it is 31 days"; break;

}

31Decision Structures

Implement the program which reads a character from the
user as the indication of color of the traffic light, and send a
comment to the user.

Input : A character indicating color of light ('r','y','g').

Output : "WAIT", "GET READY", "GO" or "WRONG INPUT".

Exercise: Traffic Lights

We need decision structures in order to give direction to the program flow.

We execute or skip a statement block by using simple if statement. If the condition holds then execute, if not
skip the statement block.

We choose one of two options by using an if/else structure. If the condition holds then execute statement block,
if not execute statement block 2.

C++ provides us with three kinds of logical operators in order to combine simple logical expressions and
construct compound complex. The C++ logical operators:

Not Operator (!) is used to get opposite of one expression.

And Operator (&&) is used to get intersection of two expressions.

Or Operator (||) is used to get union area of two expressions.

Conditional Operator (? :) can be used as an alternative of simple if /else.

Several if, if/ else structures can be expressed by a switch structure. If we have the case that an expression
may have constant values, it is best to check them by a switch instead of messy if/else components.

SUMMARY

Programming with C++32

REVIEW QUESTIONS

1. What are the possible four outputs of the following
program segment depending on the values of c1
and c2 ?
if (c1)

if (c2)
cout <<"if"<<endl;

else
cout <<"if/else"<<endl;

else if (!c2)
cout <<"?"<<endl;

else
cout <<"switch"<<endl;

2. The given code segment copies the bigger of two
variables to the third one. Rewrite it by using
if/else.

3. What is the final value of x?

int x=1;
if (x >= 0) x += 5;
if (x >=5) x += 2;
else x*=3;

4. We have the following code segment:
if (weight+110 < height)

cout << "normal weight" << endl;
else

cout << "over weight" << endl;

Which of the following possible values for weight
and height cause the message “over weight” to
be printed?
I. weight = 50, height = 155
II. weight = 80, height = 192
III. weight = 25, height = 125

a) I and II b) II and III
c) I and III d) I, II and III

c1 c2 Output

True True if

True False

False True

False False

With ‘?’ With ‘if/else’

c = (a>b) ? a : b;

33Decision Structures

5. Which results do logical expressions evaluate with
given values.

6. The ranges of marks in a school as follows :

Does the following program segment automate
the assessment of marks? If not, correct the
program.

if (avg > 0)
mark = F;

else if (avg > 20)
mark = D;

else if (avg > 40)
mark = C;

else if (avg > 60)
mark = B;

else if (avg > 80)
mark = A;

a b c Expression Result

5 3 1 c && (a>b) true

0 4 4 (b==c) || a

0 5 4
((!a) && (b!=c)) &&

(b <= c)

4 2 3 (a > b) && (c < a)

0 20 F

21 40 D

41 60 C

61 80 B

81 100 A

Programming with C++34

1. (2nd Degree Equation) Make a program that reads three integers (a, b, c) from a user as coefficients
of a quadratic equation and calculate the solution set (x1, x2) of the equation.

For ax2+bx+c=0

delta = b2-4ac

x1= (- b + sqrt (delta)) /2a

x2= (- b - sqrt (delta)) /2a)

C++ provides us with sqrt() function to perform square root operations. It is defined under <math.h>
library. e.g. x=sqrt(y) x becomes square root of y. Sqrt funtion returns a value type of double.

sample inputs sample outputs

1 3 -10 x1=2 and x2= -5
1 -4 4 x1=2 and x2=2
1 -2 4 No real roots

2. (Mini Calculator) Write a program which reads two integers as operands and a character as an operator
between them, and prints the result.

sample inputs sample outputs

3 * 7 21
5 - 12 -7
32767 / 1024 31

3. (Character Recognizer) Write a program that reads a character from the user and tells if it is a letter
('a'..'.z', 'A'…'Z'), digit ('1'…'9') punctuation mark ('.','?',',','!' etc.) or special character (other than these).

sample inputs sample outputs

a letter
5 digit
? punctuation mark
/ special character

PROGRAMMING PROBLEMS

35Decision Structures

FLOWCHART PROGRAMMING (OPTIONAL)

Making A Decision
The diamond-shaped symbol is used to make a decision in flowchart programming.
This symbol is unique in that it has two arrows coming out of it, from the right point
and bottom point, one corresponding to Yes or True, and one corresponding to No
or False.

FCPro Relational and
Equality Operators:

> : Greater

>= : Greater or Equal

< : Smaller

<= : Smaller or Equal

== : Equal

!= : Not Equal

Make a flowchart that gets an integer and then
prints “Positive” if the integer is bigger than zero.

This is a single selection problem. That is how we
should determine whether to print “Positive”. If the
test condition A>0 is satisfied the output symbol is
executed, otherwise the program simply finishes.

Example: Positive

Make a flowchart that gets two numbers (A and B), and then prints the sum of
these numbers (A+B) if the first number is bigger than the second number
(A>B).

input : Two numbers: A and B

output : A + B if A>B

Exercise: Sum

Programming with C++36

Make a flowchart that gets an integer and
then prints “Positive” if the integer is bigger
than zero, and prints “Negative” otherwise.

This is a double selection problem. That is
we should determine whether to print
“Positive” or “Negative”. If the test condition
A>0 is satisfied “Positive” will be printed,
otherwise “Negative” will be printed and the
program finishes.

Example: Negative or Positive

Make a flowchart that gets an integer and then prints “Positive” if the integer
is bigger than zero, and prints “Negative” if the number is smaller than zero, or
prints “Zero” otherwise.

input : A number : A

output : “Positive” if A is bigger than zero

“Negative” if A is less than zero

“Zero” if A is equal to zero

Exercise: Positive, Negative or Zero

Make a flowchart that gets three numbers and then determines if these three
numbers represent the length of all sides of a triangle.

input : Three numbers : A, B and C

output : “Triangle” if A, B and C can represent sides of a triangle.

“Not Triangle” if A, B and C cannot represent sides of a triangle.

Exercise: Triangle
A C

B

FCPro Logical Operators:

! : Not

&& : And

|| : Or

In a triangle, sum of any two
sides is always larger than the
third side.

Programming with C++38

Repetition Structures (Loops)
Any computer program is executed sequentially if the programmer doesn't change
the flow of the program. The sequential programs start from the first line of the
program code and execute all the statements one by one until the end of the
program.

There are two kinds of program flow controls: decision structures and repetition
structures.

Decision structures are used to
alter the normal flow of program
execution based on an
evaluation of one or more logical
expressions (condition). We
have already studied decision
structures in the previous
chapter.

Repetition structures are used to
repeat a block of code either a
specific number of times or while
some condition remains true.
For example, "Read 50 items
from the input file" or "While there
are more items in the input file,
continue reading the input."

Executing a block of code is one of the most basic but useful tasks in programming.
Many programs or Web sites that produce complex output are really only executing
a single task many times.

There are three kinds of repetition structures in C++:

� While

� Do While

� For

Making decisions is a feature
granted to human beings.

Loops are everywhere.

3939Repetition Structures

The "while" Loop
The "while loop" is the easiest repetition structure to understand for beginners. Its
structure suits the most to the description stated above.

The structure is made up of a logical condition and the block of code to be repeated.
First, the condition is evaluated, if it is true the statements in the block of the code
are executed, and the condition is evaluated one more time. This process continues
until the condition becomes false. The condition must become false at the end;
otherwise we can fall into an infinitive loop. The while loop first checks the condition
and then decides whether executes the statements therefore, it is called a pre-
conditional repetition structure.

Let's make a basic program to understand the while loop. The following program
prints the numbers from 1 to 10. It prints the value of a variable (that is a counter)
one at a time, and repeats this process ten times. To print the numbers from 1 to 10,
the variable counter is initialized to one, and its value is increased by 1 in each
iteration. On the other hand, the condition "counter <= 10" checks if the counter
exceeds its final value.

The key concepts of looping are, the counter, the initial value of the counter, the final
value of the counter, increment or decrement factor of the counter, the condition and
the statements to be executed.

The variable "counter" is our counter in this program. Since it gets only the whole
numbers from 1 to 10, its type is integer. The initial value of counter is 1, the final
value of counter is 10, and the increment factor of the counter is 1.

"counter <=10" is the condition of the loop. The while loop checks the condition at
the header of the structure. This condition states that the statement will be executed
while the counter is not bigger than 10.

"cout <<counter<<" ";" is the statement that is executed each time in the looping
process. The purpose of the program is to print the consecutive numbers from 1 to
10 thus the value of the counter must get those values one by one in each turn.

Be careful with infinitive
loops. An infinitive loop
executes forever without
terminating. Usually
incorrectly setting the
termination condition or
incorrectly increasing or
decreasing the loop-control
variables (counters) causes
an infinitive loop.

40 Programming with C++40

"counter++" increases the value of counter by one. This statement can be written as
"counter = counter + 1". C++ used this syntax at the first time. Usually
programmers use only 'c' instead of "counter" as a variable name, so "c++" means
increase the value of a counter “c” by one. I think, this is where the name of this
programming language is comes from.

/*
PROG: C3_01while.cpp
Printing the numbers from 1 to 10 increasing by 1.
*/
#include <iostream>
using namespace std;
int main()
{

int counter = 1; //initialize the counter to its
//starting value

while (counter <= 10) //continue looping until counter
//is less than its final value

{
cout <<counter<<" "; //print the current value of the

//counter
counter++; //counter gets its next value

}
system("PAUSE"); return 0;

}

1 2 3 4 5 6 7 8 9 10 Press any key to continue . . .

Increment and Decrement Operators
C++ provides unary increment (++) and decrement (--) operators. Both operators
can be used after (a++, post-increment) or before (++a, pre-increment) their
operands. If the variable 'a' needs to be incremented by 1, "a++", "a=a+1", or
"a+=1" can be used. The following program demonstrates the use of increment and
decrement operators.

/*
PROG: C3_02inc_dec.cpp
Demonstrating increment and decrement operators
*/
#include <iostream>
using namespace std;

int main()
{

int a=5;
cout <<"initial a is "<<a<<endl;
cout <<"after a++ is "<<a++<<endl;
cout <<"current value of a is "<<a<<endl;
cout <<"after ++a is "<<++a<<endl;

The following three
statements are all the same:

c++;

c = c+1;

c += 1;

Flowchart of the Program
“while”

41Repetition Structures

cout <<"current value of a is "<<a<<endl;
cout <<"after --a is "<<--a<<endl;

system("pause"); return 0;
}

initial a is 5
after a++ is 5
current value of a is 6
after ++a is 7
current value of a is 7
after --a is 6
Press any key to continue . . .

Calculate the mass of a molecule. A molecule is a chemical structure that is
made up of more then one atom. H2O is the molecule of water. It contains two

hydrogen and one oxygen atoms. The weight of hydrogen is 1, and the weight
of oxygen is 16. Thus the weight of water molecule is 2*1 + 16*1 = 18.

The first line of the input contains an integer (N) that denotes the number of the
atoms in the molecule. Each of the following N lines denotes an atom of the
molecule with two integers. The first integer is the mass of the atom, and the
second integer is the quantity of the atom.

/*
PROG: c3_03molecules.cpp
*/
#include <fstream>
using namespace std;

int main()
{

int n, weight, quantity;
int sum=0, counter=1;

ifstream fin("chem.in");
ofstream fout("chem.out");

Example: Molecules

2
1 2
16 1

chem.in

18

chem.out

A Water (H2O) Molecule

Programming with C++42

fin >> n; //How many kinds of atoms?

while (counter <= n)
{

fin >> weight >> quantity;
sum += weight*quantity; //add the weight for the new

//kind of atom.
counter++;

}

fout << sum <<endl;

fin.close();
fout.close();

system("pause");
return 0;

Modify the program “Molecules” so that it calculates the
weight of a molecule without using any variable as
counter.

Exercise: Molecules

A train leaves the first station with N passengers and visits K stations before
it arrives at the last station. In each station some passengers got off the train
and some passengers got on the train. Everybody in the train got off at the last
station. Make a program that calculates how many passengers got off the train
at the last station.

The first line of the input has two integers N and K. Each of the following K lines
contains two integers, the first one denotes the number of passengers who got
off the train at that station, and the second one denotes the number of
passengers got on the train at that station. The output should hava a single
integer that is number of passengers who got off the train at the last station.

Input file: train.in

output file: train.out

Exercise: Train

43Repetition Structures

Sample input Sample output

5 20 40
6 15
5 30
20 12
15 8
6 7

Counter-Controlled and Sentinel-Controlled
Repetitions
Counter-Controlled Repetition

Counter-controlled repetition uses a variable called a "counter" to control the number
of times the statements will be executed. The variable counter must be initialized
before the repetition and must be incremented or decremented during the repetition
process. Counter-controlled repetition is called "definite repetition" because the
number of repetitions is known before the loop begins executing.

The following program calculates a class average with a counter-controlled loop.

/*
PROG: c3_04countercont.cpp
Class average with a counter-controlled loop. Make a program to
calculate average of a class after an exam. There are N students in
the classroom and the marks are between 1 and 5.
*/
#include <iostream>
using namespace std;

int main()
{

int N, total, mark, counter;

//Get number of the marks.
cout<<"How many marks?";
cin >> N;
//Initialize the counter and total.
counter = 1;
total = 0;

//Get the mark one by one and add to total.
while (counter <= N)
{

//Get the next mark.
cout <<"Enter the next mark [1..5]: ";
cin >> mark;
total+=mark; //Add the new mark to total.

Flowchart of the Program
“countercon”

Programming with C++44

counter++; //Increment the counter.
}

float average = (float)total/N; //Calculate the average.

cout<<"The average is "<<average<<endl;

system ("pause");
return 0;

}

How many marks?5
Enter the next mark [1..5]: 4
Enter the next mark [1..5]: 5
Enter the next mark [1..5]: 3
Enter the next mark [1..5]: 4
Enter the next mark [1..5]: 5
The average is 4.2
Press any key to continue . . .

Sentinel-Controlled Repetition

In the case when users don't know the number of the repetitions in advance, a
sentinel-controlled repetition can be used instead of a counter-controlled repetition.
The idea of a sentinel controlled repetition is that there is a special value (the
"sentinel") that is used to say when the loop is done. The sentinel value must be
chosen carefully so that it cannot be confused with a legitimate value. Sentinel-
controlled repetition is called "indefinite repetition" because the number of repetitions
is not known in advance.

/*
PROG: c3_05sentinelcont.cpp
Class average with a sentinel-controlled loop. Make a program to
calculate average of a class after an exam. Your program will
process an arbitrary number of the marks. The marks are between 1
and 5. Use 0 as sentinel value to end the program execution.
*/
#include <iostream>
using namespace std;

int main()
{

int total, mark, nrMarks;
//Get the first mark and set the nrMarks to 1.
cout<<"Enter the first mark: ";
cin >> mark;
total = mark;
nrMarks = 1; //We have got one mark so far.

//Get the rest of the marks one by one and add to total.
while (mark != 0) //Continue if mark is not sentinel

Flowchart of the Program
“sentinelcont”

45Repetition Structures

Use setprecision function to
set the precision for floating-
point values. Setprecision
function is defined in the
iomanip library.

#include <iomanip>
.
.
.
cout<<"The average is"
<<setprecision(3)
<<average<<endl;
.
.
.

{
//Get the next mark.
cout <<"Enter the next mark [1..5] to finish enter 0: ";
cin >> mark;
total+=mark; //Add the new mark to total.
nrMarks++; //Increment the counter.

}

nrMarks--; //Decrease for the sentinel.
float average = (float)total/nrMarks; //Calculate the average.
cout<<"The average is "<<average<<endl;
system ("pause");
return 0;

}

Enter the first mark [1..5] to finish enter 0: 5
Enter the next mark [1..5] to finish enter 0: 3
Enter the next mark [1..5] to finish enter 0: 4
Enter the next mark [1..5] to finish enter 0: 5
Enter the next mark [1..5] to finish enter 0: 3
Enter the next mark [1..5] to finish enter 0: 5
Enter the next mark [1..5] to finish enter 0: 0
The average is 4.16667
Press any key to continue . . .

The "do/while" Loop
The "do/while" statement is similar to the "while" statement with an important
difference: the "do/while" statement performs a test after each execution of the loop
body. Therefore, the loop body is executed at least once. The "do/while" statement is
usually preferred to design menu-driven programs.

A menu-driven program has
an interface that offers the
user a simple menu from
which to choose an option.
The opposite of menu-driven
is the command-driven.
There usually exists one
option to exit in the menu-
driven programs.

Make your choice:
1. New record
2. Modify
3. Delete
4. Print
5. Exit

Programming with C++46

/*
PROG: c3_06dowhile.cpp
Printing the numbers from 1 to 10 increasing by 1.
*/

#include <iostream>
using namespace std;
int main()
{

int counter = 1; //initialize the counter to its
//starting value

do
{

cout <<counter<<" "; //print the current value of the
//counter

counter++; //counter gets its next value
}
while (counter <= 10); //continue looping until counter

//is bigger than the final
//value.

system("PAUSE");
return 0;

}

1 2 3 4 5 6 7 8 9 10 Press any key to continue . . .

The game "guess the number" is played between two players. The first player
selects an integer at random in the range 1 to 1000. The second player makes
his first guess. The first player responds "Too low", "Too high", or "You guessed
the number.". The game goes on until the second player guesses the number
correctly.

Make a program that plays the game "guess the number" as the first player. Add
the following code to your program to generate a random integer between 1 and
1000.

#include <time.h>
int main()
{

srand((unsigned)time(NULL));
int randomNumber = rand()%1001 + 1;

.

.

.

Exercise: Guess the number

The rand function returns a
pseudorandom integer in the
range 0 to RAND_MAX
(32767).

Flowchart of the Program
“dowhile”

47Repetition Structures

The "for" Loop
Like "while" and "do/while" the "for" loop enables you to evaluate a sequence of
expressions multiple numbers of times. For loops are best when you know the
number of times that the expressions are needed to be evaluated in advance
(counter-controlled repetition).

Syntax of “for” statement

for(initializations; condition; increment or decrement)
{

Statements;
}

for: keyword

Initializations: You may initialize the counter and other variables here. This part is
executed only once at the beginning.

Condition: Set the continuation-condition here to continue or end the loop. The
condition is tested each time before the statements are executed.

Increment or decrement: You may increment or decrement the counter here. This
part is executed each time after the statements have been executed.

Statements: The statements are executed each time in the loop.

/*
PROG: c3_07for.cpp
Printing the numbers from 1 to 10 increasing by 1.
*/

#include <iostream>
using namespace std;
int main()
{

int counter;
for (counter=1; counter<=10; counter++)
{

cout<<counter<<" ";
}

system("PAUSE");
return 0;

}

1 2 3 4 5 6 7 8 9 10 Press any key to continue . . .

Programming with C++48

The factorial of a non-negative integer n is the product of the positive integers
less than or equal to n. This is written as "n!", and pronounced "n factorial". 0!=1,
1!=1, 2!=2, 3!=6, 4!=24, 5!=120. The following program reads a non-negative
integer from the standard input and computes its factorial.

/*
PROG: c3_08factorial.cpp
*/
#include<iostream>
using namespace std;

int main()
{

int i, n;
long long result=1; //Initialize result for n=0 and n=1

//Factorial of numbers rapidly grow
//very large.

cout<<"N=?";
cin>>n;

for(i=2; i<=n; i++)
result *= i; //result = result*i

cout<<"N! = "<<result<<endl;

system("pause"); return 0;
}

N=?11
N! = 39916800
Press any key to continue . . .

Example: Factorial

The following program computes X raised to the power Y (XY) where X and Y
are both integer numbers and Y is non-negative. X is the base (mantissa) and Y
is the exponent value.

To get the result we have to multiply X, Y times. For example for X=5 and Y=3,
the result will be 5*5*5. In fact, C++ provides a built-in math "power" function
(double pow(double x, double y)) that calculates power of integer or floating
point numbers. We are going to use it in the chapter "Functions" in this book.

Example: X to the power of Y

Flowchart of the Program
“factorial”

49Repetition Structures

/*
PROG: c3_09power.cpp
*/
#include <iostream>
using namespace std;

int main()
{

int base, power;
long long result = 1; //Initial value for power = 0;

cout <<"Enter the base and the power?";
cin >> base >> power; //Get the input

//Calculate the result. Multiply base itself power times.
for (int i=1; i<=power; i++)

result *= base;

//Print the result
cout <<"Result is "<<result<<endl;

system("pause"); return 0;
}

Enter the base and the power?4 3
Result is 64
Press any key to continue . . .

The Fibonacci series begins with 0 and 1 and has the property that each
subsequent Fibonacci number is the sum of the previous two Fibonacci
numbers. Some of the first Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, …

Make a program to print the first N Fibonacci numbers where N is a positive
integer.

/*
PROG: c3_10fibonacci.cpp
*/
#include <iostream>
using namespace std;

int main()
{

int N;
int currentNum=1; //The first Fibonacci number

Example: Fibonacci Series

Leonardo Fibonacci (1170 -
1250) introduced to Europe
and popularized the Hindu-
Arabic number system (also
called the decimal system).
He contributed greatly to
number theory.

Programming with C++50

int previousNum=0;

cout <<"N =? ";
cin >> N;

cout<<previousNum<<" "; //Print the first Fibonacci number

/*Set a loop to print the rest of the first N Fibonacci
numbers*/
for (int i=1; i<N; i++)
{

cout<<currentNum<<" "; //Print the current Fibonacci
//number

currentNum += previousNum; //CurrentNum gets the value
//of the next Fib. number

//previousNum gets the old value of currentNum.
previousNum = currentNum - previousNum;

}

system("pause");
return 0;

}

N =? 10
0 1 1 2 3 5 8 13 21 34 Press any key to continue . . .

Binary is a number system used by digital devices like computers. The
computer represents values using two voltage levels (usually 0V and +5V). With
two levels we can represent exactly two different values. These could be any two
different values, but by convention we use the values zero (0) and one (1).

To convert binary into decimal is very simple. Just like the decimal system, we
multiply each digit by its weighted position, and add each of the weighted
values together. For example, the binary value 10011101 represents:

1*27 + 0*26 + 0*25 + 1*24 + 1*23 + 1*22 + 0*21 + 1*20 = 157.

Make a program that gets a binary number and prints its decimal equivalent as
output.

/*
PROG: c3_11bintodec.cpp
*/
#include <iostream>
using namespace std;

Example: Binary to Decimal

51Repetition Structures

int main()
{

long long binNumber, decNumber = 0;

cout<<"Enter the binary number:";
cin >> binNumber;

int weightedPos = 1; //The weighted position of the
//right-most digit

while (binNumber > 0) //We have some more digits to
//process

{
/*Multiply the right-most digit by its weighted position
and add the product to decNumber.*/
decNumber += (binNumber%10)*weightedPos;
weightedPos *= 2; //The weighted position of the next

//digit
binNumber /= 10; //Cut out the right-most digit of

//binNumber.
}

cout<<"Decimal equivalent is "<<decNumber<<endl;
system("pause");
return 0;

}

Enter the binary number:1110011
Decimal equivalent is 115
Press any key to continue . . .

Make a program that gets a decimal number and prints its binary equivalent
as output.

To convert a decimal number to its binary equivalent you can use the "short
division by 2 remainder" method. This method relies only on division by two.

For this example, let's convert the decimal number 156 to binary. Write the
decimal number as the dividend above the "long division" symbol.

156

Divide the dividend by 2 and write the integer answer (quotient) under the long
division symbol, and write the remainder (0 or 1) to the right of the dividend.

156 0
78

Exercise: Decimal to Binary

Flowchart of the Program
“bintodec”

Programming with C++52

Continue downward, dividing each new quotient by two and writing the
remainders to the right of each dividend. Stop when the quotient is 0.

156 0

78 0

39 1

19 1

9 1

4 0

2 0

1 1

0

Starting with the bottom-most remainder 1, read the sequence of 1's and 0's
upwards to the top. You should have 10011100. This is the binary equivalent of
the decimal number 156.

You are given the list of N integers. Make a program to find the maximum item
in the list. Finding the maximum and minimum items is a fundamental algorithm
in programming and has many applications. The algorithm is as follow:

Keep the first item as the maximum, and compare each item with the maximum.
If the new value is bigger than the maximum, maximum gets the value of the
new item.

/*
PROG: c3_12max.cpp
*/
#include <iostream>
using namespace std;

int main()
{

int N, maxNum, nextNum;
cout<<"How many numbers?";
cin >> N;

cout <<"Enter the first number:";
cin >> maxNum; //Suppose the first number is maximum.

Example: Maximum

53Repetition Structures

for (int i=1; i<N; i++)
{

cout <<"Enter the next number:";
cin >> nextNum;
if (nextNum > maxNum) //Compare the new number with

//maxNum
maxNum = nextNum; //newNumber is bigger

}

cout << "Maximum number is "<<maxNum<<endl;
system("pause");
return 0;

}

How many numbers?5
Enter the next number:8
Enter the next number:-15
Enter the next number:13
Enter the next number:7
Enter the next number:9
Maximum number is 13
Press any key to continue . . .

The "break" and "continue" Statements
The break statement stops the loop in which it resides. The program continues with
the next statement immediately following the loop.

The continue statement causes the program to skip the rest of the loop in the current
iteration. The program continues with the start of the following iteration. Flowchart of the Program

“max”

Programming with C++54

The following program demonstrates the break and continue statements. The
continue statement causes the program skip printing 5, and the break statement
causes the program to break the loop when the counter is 10.

/*
PROG: c3_13breakcon.cpp
*/

#include <iostream>
using namespace std;

int main()
{

for(int counter=1; counter<100; counter++)
{

if (counter == 5)
continue; //skip 5

if (counter == 10)
break; //stop the looping process

cout<<counter<<" ";
}
system("pause");
return 0;

}

1 2 3 4 6 7 8 9 Press any key to continue . . .

Which loop should I use?

Loop Type Description

while
This is a good, solid looping process with applications to numerous
situations.

do/while
This looping process is a good choice when you are asking a
question, whose answer will determine if the loop is repeated.

for
This loop is a good choice when the number of repetitions is known,
or can be supplied by the user.

Nested Loops
Loops can be nested inside other loops. A nested loop is a loop within a loop, an
inner loop within the body of an outer one.

The way a nested loop works is that the first iteration of the outer loop triggers the
inner loop, which executes to completion. Then the second iteration of the outer loop
triggers the inner loop again. This repeats until the outer loop finishes.

The following program prints a number triangle to demonstrate a nested loop. The

The number of digits in the
web page counter determines
the number of nested loops
needed to imitate the process.
How many loops do you need
for the following counter?

55Repetition Structures

outer loop determines the number of the lines in the triangle and the last number in
the current line, and the inner loop prints a line.

/*
PROG: c3_14nested.cpp
Printing a number triangle
*/
#include <iostream>
using namespace std;

int main()
{

int N;

cout <<"How many lines in the triangle?";
cin >> N;

for (int i=1; i<=N; i++) //Outer loop
{

for (int j=1; j<=i; j++) //Inner loop
{

cout<<j<<" ";//Print the current number
}
cout<<endl; //Go to the next line

}
system("pause");
return 0;

}

How many lines in the triangle?5
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
Press any key to continue . . .

Exercise: Perfect Numbers

A perfect number is a whole number, an integer greater than zero and when
you add up all of the factors less than that number, you get that number. The
first two perfect numbers are 6 and 28. 1+2+3 = 6, and 1+2+4+7+14 = 28.
There are 37 known perfect numbers.

Make a program that finds and prints all the prime numbers less than or equal
to a given number N.

Be careful choosing the
counters in a nested loop. The
Outer and inner loops must
have different counters in
such a structure.

Programming with C++56

/*
PROG: c3_15perfect.cpp
Print all perfect numbers in the range [1..N]
*/
#include <iostream>
using namespace std;

int main()
{

int N;
cout <<"N=?";
cin >> N;

for (int i=1; i<=N; i++) //i is the next number to be
//checked

{
int sum = 0; //Accumulate the factors in sum
for (int j=1; j<i; j++)
{

if (i%j == 0) //j is a factor of i
sum += j;

}
if (sum == i) //We have a perfect number.

cout << i <<" ";
}
system("pause");
return 0;

}

N=?10000
6 28 496 8128 Press any key to continue . . .

Repetition structures execute a series of statements multiple times until a certain condition is met.C++
provides three sorts of repetition structures: “while”, “do/while”, and “for”.

“while” and “for” are pre-conditional loops, whereas “do/while” is a post-conditional loop. The test condition
determines if the loop process continues. Repetition structures can be counter-controlled or sentinel-controlled
depending on the test condition.

It is often necessary to handle exception conditions within loops. The statements break and continue are used
for such cases. The break statement is used to exit the current loop before its normal ending. The continue
statement causes the current iteration to be skipped.

The placing of one loop inside the body of another loop is called nesting. In a nested loop, the outer loop takes
control of the number of complete repetitions of the inner loop.

SUMMARY

Flowchart of the Program
“perfect”

57Repetition Structures

REVIEW QUESTIONS

1. Which structure repeats a block of code?
a) decision
b) loop
c) cycle
d) continue

2. Which of the following is not a repetition structure?
a) while
b) do/while
c) for
d) switch

3. Which statement causes the program execution
to skip an iteration of a loop and continue with the
next iteration?
a) continue
b) break
c) if
d) return

4. In which of the following structure canyou not use
a break statement to continue the execution of the
program after the structure?
a) switch
b) while
c) if/else
d) for

5. How are the decision and repetition structures
called in programming?
a) loop
b) sequential
c) control
d) basic

6. What is the output of the following program?
#include <iostream>
using namespace std;
int main()
{

for (char ch1='A'; ch1<='D'; ch1++)
{

for(char ch2='D';ch2>=ch1; ch2--)
cout <<ch2<<" ";

cout<<endl;
}
return 0;

}

7. What is the output of the following program?
#include <iostream>
using namespace std;

int main()
{

int result,a,b;
result = 0;
a = 10;
while (a>0)
{

b=1;
do
{

a -= b;
result += b;
b *= 2;

}
while(b<a);
result += a;

}
cout <<a<<" "<<b<<" "<<result<<endl;
system("pause");

Programming with C++58

1. (Wonder Primes) A wonder prime is a number that can be partitioned into two prime numbers, each of
which has at least D digits and, of course, doesn't start with 0. When D=2, the number 11329 is a wonder
prime (since it connects 113 and 29, both of which are prime). Your job is to find the first wonder prime
greater than or equal to a supplied integer N when you are given D.

Sample Input : 2 11328

Sample output : 11329

2. (Round Numbers) A positive integer N is said to be a "round number" if the binary representation of N
has as many or more zeroes as it has ones. For example, the integer 9, when written in binary form, is
1001. 1001 has two zeroes and two ones; thus, 9 is a round number. The integer 26 is 11010 in binary;
since it has two zeroes and three ones, it is not a round number.

Write a program that tells how many round numbers appear in the inclusive range given by the input.

Sample input : 2 12

Sample output : 6

Output Details:

2 10 1x0 + 1x1 round

3 11 0x0 + 2x1 not round

4 100 2x0 + 1x1 round

5 101 1x0 + 2x1 not round

6 110 1x0 + 2x1 not round

7 111 0x0 + 3x1 not round

8 1000 3x0 + 1x1 round

9 1001 2x0 + 2x1 round

10 1010 2x0 + 2x1 round

11 1011 1x0 + 3x1 not round

12 1100 2x0 + 2x1 round

PROGRAMMING PROBLEMS

59Repetition Structures

3. (Tower of Happiness) The tower of happiness is located in the garden of effort. Happiness is waiting for
you in the top chamber of the tower. The stairs that lead you to the chamber has N steps and you are
allowed to climb up one or two steps from your current location. The door of the chamber will be open
only if you could climb the steps in a secret combination. Of course, finding this secret combination is a
matter of chance. For instance, you may choose one of the three ways to climb a three-step stairs: 0 1
2 3, or 0 1 3, or 0 2 3.

Make a program to determine how many different ways you can climb up the tower of happiness when
you are given the number of steps. You must start from the ground which is step 0. The higher the tower
is, the smaller the chance of catching the happiness gets.

Sample input : 3

Sample output : 3

4. (Consanguineous) Each person's blood has two markers called ABO alleles. Each of these markers is
represented by a character chosen from the set {A, B, O}. This gives six possible combinations: AA, AB,
AO, BB, BO, and OO. The ABO blood type for people with these combinations of alleles are A, AB, A, B,
B, and O, respectively.

Blood types are inherited, and each biological parent donates one ABO allele to their child. For example,
a child of two parents each having blood type A could have either type A or type O blood. A child of
parents with blood types A and B could have any blood type.

In this problem you are given list of the blood type of many couples. You should determine the set of
blood types that might characterize their children.

Input

The first line of the input contains an integer N that denotes the number of the couples. Each of the
following N lines contains two alleles. Those are the blood types of a couple.

Output

The output has N lines, each contains possible blood types of a child.

3
A B
AB AB
0 0

A B AB 0
A AB B
0

alleles.in alleles.out

Programming with C++60

5. (Nim) "Take five, or better, take one, or better, always already take none, ah!"

Nim, also known as the Marienbad game, is a kind of logic game which is played
between two players.

There are many variants of Nim. All of them start with N items (e.g. matches) and the
purpose of the game is to take the last item. One of the easiest variant of Nim is played
as follows:

Initially there are N items on the table between two players. The first player may take at
least 1, at most M items. Then the second player may take at least 1,at most M items.
They continue in this way in turn until there are no items to take any more. The one who
takes the last item (or items) is the winner.

You have to write a program to play this game. Your program must calculate the
number of the items it takes to win the game if it is possible in the first turn when you
are the first player. Consider that your opponent plays the game perfectly (I think he
has already made a program to play the game).

Input

The input file has only one line containing two integers N and M (1<=N, M<=200) where N is the
number of all the items and M is the number of the items that can be taken at a time.

Output

Your program must write "You will lose", or "You will win. Start with X" where X is the number of the items
you must take to win the game.

5 3 You will win. Start with 1

nim.in nim.out

61Repetition Structures

FLOWCHART PROGRAMMING (OPTIONAL)

Making Loops
Decision and repetition structures are called control structures in programming.
Because programmers change the flow of the execution of the program with the help
of these structures.

You have already learned how to use the diamond-shaped symbol to make
decisions in flowchart programming. The same diamond-shaped symbol is also
used to make loops.

Pre-conditional Loops
In such a loop, first, the condition is evaluated. If the condition is true, statements in
the loop body are executed and condition is evaluated again. If the condition is false,
the program continues with statements after the loop.

Make a flowchart that reads several
integer numbers. The data entry will
terminate when the user enters 0.

Your flowchart should print the number of
the negative and the number of the
positive numbers which have been read.

Example: Pre-conditional loop

Since the test condition has
been evaluated at the
beginning of the loop
structure, the while is a pre-
conditional loop in C++.

Programming with C++62

Post-conditional Loops
In such a loop, first, statements in the loop body are executed and then the condition
is evaluated. If the condition is true, statements in the loop body are executed and
condition is evaluated again. If the condition is false, the program continues with
statements after the loop.

Make a flowchart that reads several
integer numbers. The data entry will
terminate when the user enters 0.

Your flowchart should print the
number of the negative and the
number of the positive numbers
which have been read.

Example: Post-conditional loop

Since the test condition is
been evaluated at the end of
the loop structure, the
do/while is a pre-conditional
loop in C++.

You are asked to make a flowchart to calculate the average of a class from a
school subject such as Computer Science.

There are N number of students in the classroom. Some students have only one
mark, some students have more than one mark, and some students have no
mark at all. The marks are between 1 and 10.

Exercise: Class Average

Programming with C++64

Introduction
A function is a group of instructions that perform a specific task and executed when
it is called from any point of the program code.

So far, our programs have had only one function (main). Most of the contemporary
programs which solve real life problems are much larger than the programs that we
have studied. The larger the program gets; the harder it becomes to cope with it.
“Function” is the solution to this problem. Dividing the problem into simpler and
more specific tasks and solving each with a function makes it easier to solve.

Another advantage of functions is preventing unnecessary repetition of the code
segments. Forming the code as functions allows executing the same segment
several times by calling from different points of the program.

Software re-usability can be counted as another benefit of using functions. After
implementing a function for a specific task (say finding max of many numbers) it can
be copied and used in future programs also.

Most probably you are already familiar with functions from math studies. There are
polynomial, logarithmic, exponential and many other functions. Common properties
of functions are: they have some input values as parameters, they do some
operation with them and produce a result value as output. Functions in programming
languages have the same process.

How a Function Operates

A function takes some input values, after a series of operations and produces a
result. Function will produce different results for varying input values.

The Program Flow
The evolution of programming started in a sequential structure. The program
execution was starting from top going step by step downward on a straight line.
Thanks to functions modular programming was developed. This made program flow
jump between functions.

Program flow always starts from the main function. As any function is called all local

6565Repetition Structures

variables are stacked, (to be able to be remembered after the execution of a
function) and program flow runs the codes of the function body. The following figure
describes how program flow changes:

Calling a Function From the Main Function

Some Pre-defined C++ Functions
C++ provides a wide range of predefined functions. For example “cmath” library
contains plenty of different math functions. Here are some of them.

Function Description Example Output

abs(x) Returns the absolute value of x.
cout<<abs(-5);

cout<<abs(10);

5

10

ceil(x)
Returns the smallest integer
bigger than or equal to x.

cout<<ceil(15.8); 16

floor(x)
Returns the biggest integer less
than or equal to x.

cout<<floor(16.3); 16

exp(x)
Returns Euler's number e raised
to the power of x.

cout<<exp(1); 2.71828

log(x) Returns natural logarithm of x. cout<<log(2.72); 1.00063

log10(x) Returns logarithm (base 10) of x. cout<<log10(100); 2

pow(x,y) Returns x to the power y. cout<<pow(10.0 , 3.0); 1000

sqrt(x) Returns the square root of x. cout<<sqrt(9); 3

rand()
Returns a pseudorandom integer
in [0 .. RAND_MAX (32767)].

cout<<rand() % 2; 0 or 1

66 Programming with C++66

Example: Area of a Triangle

Let’s see the usage of mathematical functions in an example. The following
program takes the coordinates of three points of a triangle and calculates the
area by using Heron’s formula. Heron's formula states that the area (A) of a
triangle whose sides have lengths a, b, and c

where s is half of the perimeter of the triangle:

Given the coordinates first we calculate the length of the sides by using sqrt()
and pow() functions defined in the <math> header file. Then calculate s and
calculate the area again with sqrt() function.

//PROG: c4_01math.cpp
#include <iostream>
#include <cmath>
using namespace std;
int main()
{

int x1,x2,x3,y1,y2,y3;
float a,b,c,s,area;

cout<<"Enter the coordinates of first point :";
cin>>x1>>y1;
cout<<"Enter the coordinates of second point :";
cin>>x2>>y2;
cout<<"Enter the coordinates of third point :";
cin>>x3>>y3;

//calculate one side of triangle
a=sqrt(pow(x1-x2,2.0)+pow(y1-y2,2.0));
//calculate one side of triangle
b=sqrt(pow(x2-x3,2.0)+pow(y2-y3,2.0));
//calculate one side of triangle
c=sqrt(pow(x3-x1,2.0)+pow(y3-y1,2.0));

s =(a+b+c) /2;
area = sqrt(s * (s-a) * (s-b) * (s-c));

cout<<"\nArea is :"<<area<<endl;
system("PAUSE");
return 0;

}

Heron or Hero of Alexandria
was born in 75 AD. He was an
important geometer and
worker in mechanics who
invented many machines
including a steam turbine. His
best known mathematical
work is the formula for the
area of a triangle in terms of
the lengths of its sides.

67Functions

As you may have noticed main has the same format of a function. In fact it is a
special function that every program must have.

int main()

This means main has an integer type return value. The input parameters of a function
are declared after the function name enclosed by parenthesis. Here main has an
empty parameter list.

return 0;

return 0 is used to indicate a successful termination of the program.

The Structure of a Function
Every function consists of two parts: Function header and function body.

A function header contains

� The return value type: Gives the type of data returned by function

� The name of the function: The name that will be used to call the function. The
same rules are applied as those applied for a variable name.

� The input parameters: Can be declared as many as needed. Separated by
comas, each parameter has a variable type and name just as other variable
declarations.

Function body part contains a group of statements enclosed by curly brackets.

return-value-type function-name (parameter-list) //function Header
{
statements //function Body
}

Exercise: Dice

Make a program that simulates rolling a pair of
regular six-faced dice.

Use

srand(time(NULL));
function to seed the random-
number generator with current
time so that the numbers will
be different every time we run.

#include<time.h>
.
.
.
int main()
{

srand(time(NULL));
.
.
.

Programming with C++68

Exercise: Hypotenuse

Write a program which takes two parameters as
legs of a right triangle (a and b) and calculate the
hypotenuse (c) of the triangle. Use pow(x,y), and
sqrt(x) functions to accomplish your task.

Input : 3 4
Output : 5

Use Pythagorean theorem to calculate the hypotenuse. The square on the
hypotenuse is equal to the sum of the squares on the other two sides.

a2 + b2 = c2

Using Functions
Let’s see the usage of functions ion an example. The following example shows the
implementation of a simple makeSum program with function and without function.

The first program takes two integers (a and b) and prints to the screen the total of
them (sum). The second program does the same job in a function. It can be called
from anywhere in the program.

/*
PROG: c4_02sum.cpp
*/
#include<iostream>
using namespace std;

int main()
{

int a,b,sum;

cout<<"Enter two integers :";
cin>>a>>b;
sum=a+b;
cout<<"Sum is :"<<sum<<endl;
system("PAUSE");
return 0;

}

Enter two integers :3 5
Sum is :8
Press any key to continue . . .

Pythagoras was a Greek
philosopher who made
important developments in
mathematics, astronomy, and
the theory of music. The
theorem now known as
Pythagoras's theorem was
known to the Babylonians
1000 years earlier but he may
have been the first to prove it.

Each function should do only
one task, but do it well. Name
your functions according to
their tasks. If you have a
difficultly naming your
function, probably it performs
more than one task.

69Functions

/*
PROG: c4_03void.cpp
Sum of two integers with a void function without any parameters.
*/
#include<iostream>
using namespace std;

void makeSum(); //function prototype, no parameters, no return
int main()
{

makeSum(); //function call statement
system("PAUSE");
return 0;

}
void makeSum() //gets two integers and prints their sum
{

int a,b,sum;
cout<<"Enter two integers :";
cin>>a>>b;
sum=a+b;
cout<<"Sum is :"<<sum<<endl;

}

Enter two integers :3 5
Sum is :8
Press any key to continue . . .

The Return Statement
Although a function can be a void type (not returning any result), they are generally
used with a return value. In our previous example, function makes an operation and
prints the result to the screen. A function which returns the result into main function
would seem smarter. See the following program:

/*
PROG: c4_04return.cpp
Sum of two integers with a function that reads two numbers and
return their sum.
*/
#include<iostream>
using namespace std;
int makeSum(); //function prototype, no parameters, return an

//integer value.
int main()
{

int sum = makeSum(); //call the makeSum function
cout<<sum<<endl;
system("Pause");
return 0;

}

A function prototype
declares the function name,
its parameters, and its return
type to the rest of the program
prior to the function's actual
declaration.

Programming with C++70

int makeSum()
{

int a,b;
cout<<"Enter two integers :";
cin>>a>>b;
return a+b; //return a+b to the caller function(main)

}

The function does not write the result but it returns the sum as the result of function
to “sum” variable defined in main.

The return statement has two important roles:

� Carries the result of the function. It can return anything including variables,
constants even function calls provided that it evaluates to a value of the type
declared in the function header.

� Immediately terminates execution of function and returns to its caller.

A function may have more than one return statement. Function will terminate with any
of them. See how the following function will quit with one of the return statements.

int max()
{

int a,b;
cin>>a>>b;
if (a>b)

return a;
return b

}

Passing Arguments to the Functions
As we have mentioned before, functions generally take some values as input and
these are called the parameters of the function. They behave like other local
variables declared in the function and are created at the beginning of the function
execution and destroyed on exit. So far our examples do not take any parameters.
Let’s improve our example so that it takes two integers as parameter and returns
their sum.

/*
PROG: c4_05paramter.cpp
Sum of two function with a function that has two integers as input
parameters and returns their sum as a return value.
*/

#include<iostream>
using namespace std;
int makeSum(int, int); //function prototype
int main()
{

The max function with
conditional operator.

int max()
{

int a,b;
cin>>a>>b;
return (a>b ? a: b);

}

71Functions

int a,b,sum;
cout<<"Enter two integers :";
cin>>a>>b;

//call makeSum function
sum = makeSum(a,b); //a and b are actual parameters

cout<<"Sum is :"<<sum<<endl;
system("PAUSE");
return 0;

}
int makeSum(int x, int y) //x and y are formal parameters
{

return x+y;
}

Now it is more similar to our first function definition, which takes some input values,
does some calculations and returns a result value. This makeSum function can be
called from anywhere in the code with any values and will return sum of the inputs.

We have an important consideration while passing arguments to the function. That
is the passed arguments change their values as the variables are passed. In other
word, if you want the actual parameters to remain unchanged you should prefer the
pass by value; on the other hand, if you want the change to affect actual parameters,
prefer pass by reference.

Pass by Value

By default C++ passes the arguments by value. In the previous example, the
makeSum function passed its parameters by value. More precisely, when a variable
is used to call a function, a copy of that variable is created and used during the
execution of the function. All the changes are done on this copy. In return the
operations done inside a function do not alter the variables that are used to call the
function. Examine the following example:

/*
PROG: c4_06byvalue.cpp
Passing an integer to a function as a value.
*/
#include<iostream>
using namespace std;
void doubleIt(int);

int main()
{

int x=10;
cout<<"Before calling the function dobuleIt, x is "<<x<<endl;
doubleIt(x);
cout<<"After calling the function dobuleIt, x is "<<x<<endl;
system("PAUSE");

Parameters (arguments) are
used to pass information back
and forth between the calling
and caller functions. The
parameters in the function call
statement is called actual
parameters, and the
parameters in the header of
the function are called formal
parameters.

When calling a function with
the pass by value method,
the formal parameters take the
values of the actual
parameters. Actual and formal
parameters reside in different
locations of the memory.

Programming with C++72

return 0;
}
void doubleIt(int y)
{

y=2*y;
cout<<"After doubled in the function, y is "<<y<<endl;

}

Before calling the function dobuleIt, x is 10
After doubled in the function, y is 20
After calling the function dobuleIt, x is 10
Press any key to continue . . .

Here the doubleIt() function does not change the value of the variable used to call
the function. Variable y is created as a copy of x but change on y is not applied to x.

Pass by Reference

As we have seen, values of variables passed to the function remain unchanged;
however you may intend to alter the values of actual parameters as the formal
parameters change. You can accomplish this by passing the variables by reference.
Technically, the difference is adding an address operator (&) in front of the passed
variable. Theoretically, this means: pass the actual memory address of the variable
instead of a copy of it. This makes the function do all operations on the actual
memory address of the variable. As a result what applied in the function
automatically affects the variable passed to the function.

Now let’s implement the previous example with the pass by reference.

/*
PROG: c4_07byreference.cpp
Passing address of an integer to a function as a value.
*/
#include<iostream>
using namespace std;

void doubleIt(int &); //doubleIt will pass an address of an
//integer.

int main()
{

int x=10;

cout<<"Before calling the function dobuleIt, x is "<<x<<endl;
doubleIt(x);
cout<<"After calling the function dobuleIt, x is "<<x<<endl;

system("PAUSE");
return 0;

}

Variables in the Memory

Variables in the Memory

The address operator (&) is
a unary operator that can be
used to obtain the memory
address of any variable or
object.

73Functions

void doubleIt(int &y)
{

y=2*y;
cout<<"After doubled in the function, y is "<<y<<endl;

}

Before calling the function dobuleIt, x is 10
After doubled in the function, y is 20
After calling the function dobuleIt, x is 20
Press any key to continue . . .

Exercise: Swap Function

Make your own version of swap
function and test it in a program. To
implement a swap function, what you
would like to do is pass in two
variables and have the function swap
their values.

Exercise: makeSum

Remake the makeSum function so that it takes three parameters: the value of
a, the value of b, and the address of sum. Then, calculates sum of a and b,
assigns the result to sum. The main function of the program might be like the
following:

int main()
{

int a,b,sum;
cout<<”Enter two integers:”;
cin >> a >> b;
makeSum(a, b, sum);
cout<<”Sum of your numbers is “<<sum<<endl;
system(“pause”);
return 0;

}

When calling a function pass
by reference, the formal
parameters take the
addresses of actual
parameters. Actual and formal
parameters reside in the same
locations of the memory.

Programming with C++74

Scope and Lifetime
The scope of a variable is the program segment from which it can be referenced. In
other words, scope rules manage when to allocate memory space for a variable and
when to destroy it. A variable can be either of type local, global or static local. Local
variables have function or block scope; while global variables have file scope.

Local Variables

A variable declared within a block is local to that block. Such a variable can be
accessed only in that block or in blocks nested within that block. And it is known from
the point it is declared. This means that the variable is not created until the
declaration statement is executed and it is destroyed with the ending curly brackets
of that block. This is important to remember a local variable will not hold its value
between activations of its block.

When a local variable declared with the same name of a variable in outer block, the
variable in the outer block is hidden until the inner block is terminated. That is to say,
while executing in the inner block, compiler sees the value of innermost local
variable, not the value of the identically named variable of outer block. We will
analyze this on the example after studying global variables.

The same rules are applied to the function arguments as those applied to local
variables. That is function argument’s scope is also local to the function and they are
also destroyed on exit of function.

Global Variables

A variable declared outside of any function is a global variable and it can be
accessed throughout the entire program. (Starting from the point it is declared). In
other words global variables and function definitions have file scope.

Since the lifetime of global variables, starts from the point they are declared, it is best
to declare them near the top of the program. However, theoretically they must be
declared before they are first referenced.

Remember that if a local variable is defined with the same name, it is used in that
local area not the global. Thus, although global variable can be referenced from any
piece of code in the program, this requires that no local variable has the same name.

The following example illustrates the usage of local and global variables.

/*
PROG: c4_08global.cpp
using local and global variables.
*/
#include<iosteam>
using namespace std;

void first();
void second();

All variables that are
declared in a function are
local to the function. They can
not be referenced from
outside the function (local
scope). Their lifetime is the
same as the activation of the
function.

Parameters are like local
variables (local scope,
function lifetime).

Local variables have no initial
values whereas parameters
are assigned an initial value
from the corresponding
expression in the function call.

A global variable is
accessible in every scope
unless there is another local
variable or parameter which
has the same name as the
global variable.

Keep your connections
simple. Avoid global variables
whenever possible. If you
must use global variables as
input, document them
thoroughly.

75Functions

int x = 1; //global x
int main()
{

int x = 5; //local x of function main()
cout<<"local x in outer scope of main is "<<x<<endl;
{

int x = 7; //local x special to this block
cout<<"local x in inner scope of main is "<<x<<endl;

}
cout<<"local x in outer scope of main is "<<x<<endl;

first();
second();
cout<<"local x in main is "<<x<<endl;
system("PAUSE");
return 0;

}

void first()
{

int x = 25; //local x of function first()
cout<<"local x in the function first is "<<x<<endl;

}
void second()
{

//since second() does not have any local x
cout<<"global x in the function second is "<<x<<endl;
x=10; //change the value of global x.

}

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5
local x in the function first is 25
global x in the function second is 1
local x in main is 5
Press any key to continue . . .

Exercise: Seconds

Write a function that takes three integer
parameters; number of hours, number
of minutes, and number of seconds and
returns the total number of seconds.

Programming with C++76

Static Local Variables

Static local variables are a mixture of local and global variables. They are defined like
local variables, can not be accessed from out of the block. However, they are not
destroyed at the end of the block, their storage duration extends the entire program.
This means a static local variable will hold its value between activations of its block.
Let’s see the effect in the following example:

/*
PROG: c4_09static.cpp
Using static local variables.
*/
#include<iostream>
using namespace std;

void first()
{

int x = 25; //local x of function first()
cout<<"local x in the function first is "<<x<<endl;
++x;

}

void second()
{

static int x = 1; //x is initialized to 1 only on first run
cout<<"This function is called "<<x<<" times "<<endl;
++x;

}

int main()
{

first();
second();
cout<<"Calling functions once more"<<endl;
first();
second();
system("PAUSE");
return 0;

}

local x in the function first is 25
This function is called 1 times
Calling functions once more
local x in the function first is 25
This function is called 2 times
Press any key to continue . . .

This example shows the difference of local and static local variables. Compiler lost
the value of local variable x and initialized to the same number when called for the
second time (in function first()). However the static local variable is initialized only on
the first run and it is remembered in the second run (in function second()).

77Functions

Overloading Functions
Function overloading enables you to use the same name for different functions by
differentiating the parameter list. The compiler chooses the right function according
to the right parameter list. These functions with the same name, but are differentiated
by parameter lists, are said to be overloaded functions.

In the following example we have a function “max()” which returns the maximum of
2 numbers. Another instance of this function is written with 3 inputs. That is max
function with two parameters returns the max of two numbers, whereas max function
with three parameters returns the max of three.

/*
PROG: c4_10overload.cpp
Function overloading
*/
#include<iostream>
using namespace std;

int max(int, int);
int max(int, int, int);

int main()
{

int x,y,z;
cout<<"Please enter three numbers :";
cin>>x>>y>>z;
cout << "max of " << x<<" "<< y<<" "<< z<< " is:";
cout << max(x,y,z)<< endl;

system("PAUSE");
return 0;

}

int max(int a, int b) //max function with two parameters
{

return (a>b ? a : b);
}

int max(int a, int b, int c) //max function with three
parameters
{

return max(max(a,b),c);
}

Please enter three numbers :3 5 2
max of 3 5 2 is:5
Press any key to continue . . .

Programming with C++78

Exercise: Area

Make a program to calculate the area of a square,
rectangle, and triangle. Make three different
functions with the same name to calculate the
areas.

The area function to calculate area of a square
should take single integer parameter, and return an
integer value. The area function to calculate area of
a rectangle should take two integer parameters and
return an integer value. The area function to
calculate area of a triangle should take three integer
parameters and return a double value.

The main function of your program and a single run
might be as follows:

.

.

.
int main()
{

int a,b,c;

cout<<"side of a square=? ";
cin >>a;
cout<<"Area of the square is "<<area(a)<<endl;

cout<<"sides of a rectangle=? ";
cin >>a>>b;
cout<<"Area of the rectangle is "<<area(a,b)<<endl;
cout<<"sides of a triangle=? ";

cin >>a>>b>>c;
cout<<"Area of the rectangle is "<<area(a,b,c)<<endl;

system("pause");
return 0;

}

side of a square=? 4
Area of the square is 16
sides of a rectangle=? 3 5
Area of the rectangle is 15
sides of a triangle=? 5 6 8
Area of the rectangle is 14.9812
Press any key to continue . . .

79Functions

A function is a group of statements which performs a specific task. They are beneficial in terms of dividing
the problem into simpler tasks, decreasing the code repetition and software re-usability. C++, provides the
programmer with a large number of predefined functions.

Related to functions we have two important subjects: the method of passing arguments into function and types
of variables according to scope and lifetime.

Speaking about scope and lifetime there are three different variable types which are: local, global and static
local variables. Local variables are known only in the block they are defined. Global variables can be accessed
from any part of the program unless a local variable is defined with the same name. Static local variables can
be accessed from their own block but they exist till the end of program. This means that each function call
compiler remembers the value of static local variables from the last call.

There are two ways to pass arguments to a function namely pass by value and pass by reference. By default,
C++ uses the pass by value method for passing arguments to functions. “Pass by value” method creates a
copy of the argument and does not influence the variable used to call the function. On the other hand “pass
by reference” method passes the address of the variable, thus it enables altering the passed arguments value
in the function.

Finally, a function can be rewritten with the same name but different parameter list. This is advantageous if the
same operation with different types or amount of data is needed. This rewriting of a function is called function
overloading.

SUMMARY

REVIEW QUESTIONS

1. What is the name of the function each C++
function must have?
a) start
b) main
c) c++
d) begin

2. A ____________ tells the compiler the name of the
function, the type of data returned by the function,
the number of parameters the function expects to
receive, the types of the parameters, and the
order in which these parameters are expected.

The compiler use them to validate function calls.
a) function prototype
b) function call
c) variable
d) parameter

3. ____________ function returns no value.
a) int
b) static
c) void
d) main

Programming with C++80

4. What is the output of the following program?
#include<iostream>
using namespace std;

int a,b;
void function()
{

a = a+b;
b = a*2;

}
void main()
{

a=1; b=3;
cout <<a<<" "<<b<<endl;
function();
cout <<a<<" "<<b<<endl;

}

5. What is the output of the following program?
#include<iostream>
using namespace std;

int a,b;
void function()
{

int a=3, b=2;
cout <<a<<" "<<b<<endl;

}
void main()
{

a=1; b=3;
cout <<a<<" "<<b<<endl;
function();
cout <<a<<" "<<b<<endl;

}

6. What is the output of the following program?
#include<iostream>
using namespace std;

int function(int x, int y)
{

return x+y;
}
int main()
{

int a=2, b=3;
a = function(a, b);
b = function(function(a, b), b);
cout <<a<<" "<<b<<endl;
return 0;

}

7. What is the output of the following program?
#include<iostream>
using namespace std;

int f1(int, int);
int f2(int, int);
int main()
{

int a=2, b=1;
a = f1(a, a);
b = f2(b, a);
cout <<a<<" "<<b<<endl;
return 0;

}
int f1(int x, int y)
{

return x+y;
}
int f2(int x, int y)
{

return x*f1(x,y);
}

81Functions

8. What does the following program do?
#include<iostream>
using namespace std;

void go(int &, int &);
void go(int &, int &, int &);
int main()
{

int a, b, c;
cout <<"Enter three integers: ";
cin >>a>>b>>c;
go(a,b,c);
cout <<a<<" "<<b<<" "<<c<<endl;
return 0;

}
void go(int &x, int &y)
{

int temp = x;
x = y;
y = temp;

}
void go(int &x, int &y, int &z)
{

if (x > y)
go(x,y);

if (x > z)
go(x,z);

if (y > z)
go(y, z);

}

9. What does the following program do?
#include<iostream>
using namespace std;

int xyz(int &);
int main()
{

int num;
cout <<"Enter a positive number: ";
cin >>num;
while (num != 0)

cout<<xyz(num)<<" ";
return 0;

}

int xyz(int &n)
{

int d = n%10;
n /= 10;
return d;

}

10. What does the following program do?
#include<iostream>
using namespace std;

int mystery(int a);
int main()
{

int N,result=2;
cout <<"N=? ";
cin >>N;
for (int i=3; i<=N; i++)

result += mystery(i);
cout <<result<<endl;
return 0;

}
int mystery(int x)
{

for (int i=2; i*i<=x; i++)
if (x%i == 0)

return 0;
return x;

}

11. What does the following program do? (In the
program, the what function calls itself. Such
functions are known as recursive functions.)
#include<iostream>
using namespace std;
int what(int, int);

Programming with C++82

int main()
{ int b, p;

cout <<"Enter two integers: ";
cin >>b>>p;
cout << what(b,p) <<endl;
return 0;

}
int what(int x, int y)
{

return (y>0? x*what(x,y-1) : 1);
}

12. The following program has been made to read a
positive integer N, and then print the first N
Fibonacci numbers. What is wrong with this
program? (Fibonacci numbers starts with 0 and 1,
and each successive number is the sum of
previous two numbers. The first Fibonacci
numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.)
#include<iostream>
using namespace std;
void fib(int);
int main()
{

int n;
cout <<"N=? ";
cin >> n;
cout <<"The first "<<n<<" Fibonacci
numbers are: "<<endl;
fib(n);
return 0;

}
void fib(int n)
{

int prev=0, next=1;
cout<<0<<" ";
while(next <= n)
{

cout<<next<<" ";
int temp = next;
next += prev;
prev = temp;

}
}

13. The following program has been made to read a
positive integer N, and then print the sum of the
digits of N. What is wrong with this program?
#include<iostream>
using namespace std;
int go(int &);
int main()
{

int n, sum=0;
cout <<"N=? ";
cin >> n;
while (n>0)
//add the next digit to the sum

sum += go(n);
cout<<sum<<endl;
return 0;

}
int go(int &x)
{

//return the right-most digit
return x%10;
//cut the right-most digit
x /= 10;

}

83Functions

1. (Geometric Means) Write a program that repeatedly asks the user to enter pairs of numbers until one of
the pair is zero. For each pair, the program should use a function to calculate the geometric mean of the
numbers. The function should return the answer to main(), which reports the result.The geometric mean
of 2 numbers is the square root of the product of numbers, can be formulated as:

Geometric Mean = square root of (X1 *(X2)

Sample input : 2 32

4 36

14 0

Sample output : 8

12

2. (Pascal Triangle) Write a complete program which will display the Pascal's triangle. Program should read
an integer (N) that is the number of the rows in the triangle. Write a function factorial that takes an integer
n and returns its factorial (n!). Write a second function combination which takes two integers n and r and
return the c(n,r). Remember c(n,m) = n! / ((n-r)! r!)

Sample input : 5

Sample output : 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

3. (Line Intersection) Make a program that gets two lines and finds their intersection point. Your program
will reads two points of each line.

The line is passing through the points p1(x1, y1)
and the point (x2, y2) can be formulized as

Sample input : 1 3 6 0

2 1 1 3

Sample output : 3.83 1.30

PROGRAMMING PROBLEMS

Programming with C++84

4. (Mined Area) You need to land a helicopter in a place where the war
is going on. But you have been informed that a triangular area had
been mined by the enemy forces. You are given coordinates of
corner points (p1(x1, y1), p2(x2, y2), p3(x3, y3)) of the triangular area
and coordinates of the landing point (p0(x0, y0)). Write a program
that determines whether the landing point is safe.

The input consists of four lines. The first three lines contain the
coordinates of the corner points, and the fourth line contains the
coordinates of the landing point. The output should be “SAFE” if the
landing point is out of the mined area. If the landing point is in the
mined area, including borders, the output should be “DANGEROUS”

Sample input : 1 6

1 3

5 3

3 5

Sample output : SAFE

5. (Highway) Your are hired to calculate the total length of
illuminated part of a highway. The length of the highway is L
km and there are currently N number of lamps which are
used on the highway. The lamps are not identical, thus, the
length of the interval each lamp illuminates may vary. You
are given the intervals of lamps. Make a program that
calculates total length of the interval. The overlapped parts
of the intervals will be calculated only once.

The input file has several lines. In the first line there are two integers L (1<= L <= 100) that denote the
length of the highway in meters, and N (1<=N<=1000) that denotes the number of the intervals. Each
of the following N lines contains two integers that denote the interval illuminating by a lamp. All the
intervals are given in order by their starting position.

15 6
0 1
2 4
6 9
6 10
11 14
12 13

10

highway.in highway.out

Programming with C++86

Arrays and Vector Class
We have covered how to declare and use variables of various types, which can hold
only one value at a time except string. We know how to declare a single char, integer,
long and float values. These are big enough to implement the problems that can be
handled with a small amount of memory. However we often encounter problems
which need to keep a series of data. For example all marks of a student, or even all
marks of all students etc. For such cases, we need a data structure that is capable
to store a series of variables that are of the same type and size.

An array is a simple data structure that allows us to declare and use a series of same
type of data.

Array Declaration and Accessing Array Elements

Any array element (item) can be accessed by giving the name of the array followed
by the position number of the particular element in square brackets([]). The first
element in an array always has the index zero, thus, a[0] refers to the first element of
the array a. The second element of the array a is a[1], the third element is a[2], and

so on. That is, the index of the ith element of an array is i-1.

Vector class is a container class that represent arrays in C++. Vector class is
defined in the <vector> header file. Vector is a dynamic data structure in that, its
size can increase and shrink at the time. The following program declares an array of
integer (a), reserves memory for 5 elements, and then assigns some numbers to the
array.

//PROG: c5_01vector.cpp
#include<vector>
using namepace std;
int main()
{

vector<int> a; //declare a vector of integer
a.resize(5); //allocate memory for five elements
a[0]=3; a[1]=85; a[2]=-7; a[3]=5; a[4]=4;
cout<<”a[1] is “<<a[1]<<endl;
cout<<”a[a[0]] is “<<a[a[0]]<<endl;
system(“Pause”);
return 0;

}

a[1] is 85
a[a[0]] is 5
Press any key to continue...

A data structure is a way of
storing data in a computer so
that it can be used efficiently.
Often a carefully chosen data
structure will allow a more
efficient algorithm to be used.

C++ supports two sorts of
array: static arrays and
dynamic arrays (vector).

The declaration of an static
array slightly differs from the
declaration of a single
variable. It is the size of the
array which is specified within
square brackets following the
variable name. For example,
an array (a) of 10 integers can
be declared as:

int a[10];

The static arrays (C-like
arrays) can be initialized
during the declaration.

int a[3]={1,2,3};
int b[5]={1,2};
char c[] = “abc”;

a gets (1, 2, 3), b gets (1, 2,
0,0, 0) and c gets “abc”.

87Arrays and Strings 87

Example: Reading and Printing Vectors

Make a program that reads N numbers from the user and then prints them in
reading order and in reverse order.

/*
PROG: c5_02reverse.cpp
*/
#include<iostream>
#include<vector> //for vector class
using namespace std;

int main()
{

int n;
vector<int> numbers;
cout<<"How many numbers? ";
cin >> n;
numbers.resize(n); //allocate memory for n items.
for(int i=0; i<n; i++) //read the numbers
{

cout<<"Enter the next number: ";
cin >> numbers[i];

}
cout<<"Your numbers in reading order: ";
for(int i=0; i<n; i++) //print in reading order

cout<<numbers[i]<<" ";
cout<<endl;
cout<<"Your numbers in reverse order: ";
for(int i=n-1; i>=0; i--) //print in reverse order

cout<<numbers[i]<<" ";
cout<<endl;
system("Pause");
return 0;

}

How many numbers? 5
Enter the next number: 3
Enter the next number: 4
Enter the next number: 5
Enter the next number: 2
Enter the next number: 6
Your numbers in reading order: 3 4 5 2 6
Your numbers in reverse order: 6 2 5 4 3
Press any key to continue . . .

Flowchart of the Program
“reverse”

Programming with C++88

Exercise: Collecting Coins

Your are given N coins in a line. The value of a coin can
be either 1, 2, 5, 10, 25 or 50 . Make a program that gets
the number of the coins (N), a selection factor (K), and
the values of coins. Your program must calculate the
sum of the coins in the positions i*K where i starts with
0 and increases by 1.

8 3
2 5 25 10 1 2 50 5

62

coins.in coins.out

Vector Manipulation
A vector can be assigned to another vector by using the assignment operator (=),
and relational operators (==, <, <=, >, >=, !=) can be used to compare two
vectors.

Vector Class provides some methods for handling some vector operations. Some of
the Vector Class methods are listed as follows:

Method Description

size Returns the number of elements in the vector.

resize Specifies a new size for a vector.

push_back Add an element to the end of the vector.

begin Returns an iterator to the first element in the vector.

end Returns an iterator that points just beyond the end of the vector.

assign
Erases a vector and copies the specified elements to the empty
vector.

reverse Reserves a minimum length of storage for a vector object.

insert
Inserts an element or a number of elements into the vector at a
specified position.

at Returns a reference to the item at a specified location in the vector.

Iterator is a pointer that is
used to refer a single item of a
vector or another STL
container. In the following
program segment, intArray is
an integer vector and intIt is
an iterator of an integer vector.

vector <int> intArray;

vector<int>::iterator
intIt;

The Standard Template
Library (STL), is a C++
library of container classes
(vector, list, set, map, etc),
algorithms (sort, find, etc),
and iterators; it provides many
of the basic algorithms and
data structures of computer
science.

89Arrays and Strings

Example: Merging Vectors

Make a program that merges two sorted lists of numbers. Your program
should read the list from a file and print the merged list into another file.

//PROG: c5_03merge.cpp
#include<fstream>
#include<vector>
using namespace std;
int main()
{

vector<int> a,b,c;
int i,j,n;
ifstream fin("merge.in");
ofstream fout("merge.out");
fin>>n; a.resize(n);
for (i=0;i<n;i++)

fin>>a[i];
fin>>n; b.resize(n);
for (i=0;i<n;i++)

fin>>b[i];

i=j=0;
while ((i<a.size()) && (j<b.size()))

if (a[i] < b[j])
c.push_back(a[i++]);

else
c.push_back(b[j++]);

while (i<a.size())
c.push_back(a[i++]);

while (j<b.size())
c.push_back(b[j++]);

for (i=0;i<c.size();i++)
fout<<c[i]<<" ";

return 0;
}

5
3 5 5 9 11
8
1 3 5 8 9 14 15 20

1 3 3 5 5 5 8 9 9 11 14 15 20

merge.in merge.out

The process of merging two
sorted lists of items can be
used for a variety of
applications. For example, the
well-known merge sort
algorithm is based on dividing
and merging the lists.

Programming with C++90

Multidimensional Arrays
Arrays can have more than one dimension which are called multidimensional arrays.
Suppose that we want to keep temperature statistics of a month. Each entry keeps
the temperature value of one day. Assuming a month with 4 weeks of 7 days it can
be illustrated as:

25 27 27 28 25 25 23

22 22 20 21 21 23 24

24 25 25 29 30 33 35

38 38 35 33 33 30 27

0 1 2 3 4 5 6

0

1

2

3

Exercise: Reading and Printing a Matrix

Make a program that gets daily temperatures of a month and
prints them in a tabular format.

//PROG: c5_04matrix.cpp
#include<iostream>
#include<vector>
using namespace std;

int main()
{

//declare a vector of vector with 4 rows
vector< vector<int> > month(4);
int i,j;

for(i=0; i<4; i++)
month[i].resize(7); //resize each row to 7

//Read the temperature of each day
for (i=0; i<4; i++)

for (j=0; j<7; j++)
{

cout<<"Temperature of week "<<i<<" and day "<<j<<" :";
cin >> month[i][j];

}
cout<<endl;

Vector refers to a one
dimensional array, and matrix
refers to a two dimensional
array in computer science

The month could be declared
as a static matrix like below:

int month[4][7];

91Arrays and Strings

//Print the matrix in a tabular format
for (i=0; i<4; i++)
{

for (j=0; j<7; j++)
cout<<month[i][j]<<" ";

cout<<endl;
}

system("Pause");
return 0;

}

Temperature of week 0 and day 0 :25
Temperature of week 0 and day 1 :27
Temperature of week 0 and day 2 :27
Temperature of week 0 and day 3 :28
Temperature of week 0 and day 4 :25
Temperature of week 0 and day 5 :25
Temperature of week 0 and day 6 :23
Temperature of week 1 and day 0 :22
Temperature of week 1 and day 1 :22
Temperature of week 1 and day 2 :20
Temperature of week 1 and day 3 :21
Temperature of week 1 and day 4 :21
Temperature of week 1 and day 5 :23
Temperature of week 1 and day 6 :24
Temperature of week 2 and day 0 :24
Temperature of week 2 and day 1 :25
Temperature of week 2 and day 2 :25
Temperature of week 2 and day 3 :29
Temperature of week 2 and day 4 :30
Temperature of week 2 and day 5 :33
Temperature of week 2 and day 6 :35
Temperature of week 3 and day 0 :38
Temperature of week 3 and day 1 :38
Temperature of week 3 and day 2 :35
Temperature of week 3 and day 3 :33
Temperature of week 3 and day 4 :33
Temperature of week 3 and day 5 :30
Temperature of week 3 and day 6 :27

25 27 27 28 25 25 23
22 22 20 21 21 23 24
24 25 25 29 30 33 35
38 38 35 33 33 30 27
Press any key to continue . . .

92 Programming with C++92

Exercise: Transpose Matrix

The transpose of a matrix is the reverse orientation of the original matrix, so
that the values across the rows become the values down the columns, and the
values of the columns become the values across the rows.

Make a program to transpose a matrix.

Sample run:

Enter the number of rows 2
Enter the number of columns 4
Enter the values of the matrix
3 6 9 1
5 2 7 4
Transpose of the matrix is:
3 5
6 2
9 7
1 4
Press any key to continue . . .

Exercise: The Biggest Subtotal

You have an NxM matrix filled with numbers between -100 and 100. Find the
KxK submatrix which has the biggest sum, where (K<=N and K<=M).

The input file has several lines. The first line contains three integers: N, M, and
K respectively. Each of the following N lines represent a row of the matrix with M
integers.

The output should display the position of the left-upper element of the submatrix
in the first line, and the sum in the second line.

4 5 3
2 6 7 -2 4
4 8 -3 9 3
7 6 -1 5 2
-5 1 -11 3 -8

0 1
35

subtotal.in subtotal.out

93Arrays and Strings

Passing Arrays to Functions
There is no difference passing individual array elements to a function. They can pass
as value or reference.

Static arrays and vectors behave differently while passing them to functions. Static
arrays are always passed by reference, where as, vectors can be passed to
functions by value or by reference. The name of a static array is the address of its
first element, thus, passing it to a function, it implicitly takes the address.

The following program demonstrates passing arrays to functions.

//PROG: 05_05pass.cpp
#include<iostream>
#include<vector>
using namespace std;

typedef vector<int> TIntVec; //user defined type definition
void f1(int[], int); //call by reference
void f2(TIntVec); //call by value
void f3(TIntVec &); //call by reference
void print(int[], int); //call by reference
void print(TIntVec); //call by value
//--
int main()
{

int a[5] = {1,2,3,4,5}; //declare and initialize a
vector <int> v(a, a+5); //declare v and initialize it to a
print(a,5);
print(v);
f1(a, 5);
f2(v);
print(a, 5);
print(v);
f3(v);
print(v);
system("pause");
return 0;

}
//--
void f1(int a[], int n)
{

int temp = a[0];
for(int i=1; i<n; i++)

a[i-1] = a[i];
a[n-1] = temp;

}
//--
void f2(TIntVec a)
{

int temp = a[0];
for(int i=1; i<a.size(); i++)

Every variable must have a
data type in C++. The
typedef keyword is used to
define new data type names
to make a program more
readable.

When passing a static
multidimensional array to a
function, you must denote the
length of all dimensionals
except the first one. The
length of the first dimension
may be passed as a second
parameter

void f(int[][5], int);

When passing a static vector
to a function, you may omit
the length of the vector. It can
be passed as a second
parameter:

void f(int[], int);

Programming with C++94

a[i-1] = a[i];
a[a.size()-1] = temp;

}
//--
void f3(TIntVec &a)
{

int temp = a[0];
for(int i=1; i<a.size(); i++)

a[i-1] = a[i];
a[a.size()-1] = temp;

}
//--
void print(int a[], int n)
{

for (int i=0; i<n; i++)
cout<<a[i]<<" ";

cout<<endl;
}
//--
void print(TIntVec v)
{

for (int i=0; i<v.size(); i++)
cout<<v[i]<<" ";

cout<<endl;
}

1 2 3 4 5
1 2 3 4 5
2 3 4 5 1
1 2 3 4 5
2 3 4 5 1
Press any key to continue . . .

Exercise: Sorted

The following function returns true if the vector v is sorted in nondecreasing
order, and returns false otherwise. Complete the function.

bool isSorted (vector<int> v)
{

.

.

.
};

95Arrays and Strings

Searching Arrays
Searching arrays for a particular value is a common activity that any programmer
should know how to do. Searching is especially useful with arrays. Searching is used
daily on the Internet, with surfers using search engines.

C++ provides two kinds of searching: sequential searching and binary searching.

Sequential (Linear) Searching

The sequential search is best used if the array you are searching is unsorted. It
compares the target value with all the elements of the array one by one starting from
the first element until it finds the target value or there is no more element to compare.

The find method in the <algorithm> header file performs sequential searching. It
locates the position of the first occurrence of the target in a range that has a
specified value.

The find method returns an iterator addressing the first occurrence of the target in a
range. If no such value exists in the range, the iterator returns the address of the
position that is one past the final element.

The following program demonstrates the find method.

//PROG: 05_06linsearch.cpp
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()
{

vector<int> v;
vector<int>::iterator it; //it is an iterator to an int vector.
v.push_back(1);
v.push_back(13);
v.push_back(4);
v.push_back(7);

it = find(v.begin(), v.end(), 4); //searching for 4
if (it != v.end())

cout<<"Found in the position "<<it-v.begin()<<endl;
else

cout<<"Not found"<<endl;

system("pause");
return 0;

}

Found in the position 2
Press any key to continue . . .

Use the pointer
dereferencing operator (*) to
get the value which is pointed
by an iterator. The following
statement prints the value that
is pointed by the iterator it:

cout<<(*it)<<endl;

Programming with C++96

Exercise: Linear Searching

Make your own version of the linear search function. Your function should take
a vector and a target value as input parameters, and returns the position of the
first occurrence of the target in the vector. If the target doesn’t exist in the vector,
your function returns -1.

int linearSearch(vector<int> v, int target)
{

.

.

.
}

Binary Searching

Sometimes we need to search for a specific value in a sorted list. For example,
looking up a word in a dictionary or finding a name in a phone book.. Having the
information of list being sorted decreases the search algorithms complexity
logarithmically. That is to say the number of comparison operations decreases to
log2(N) instead of N. When performing a search in a list of 1000 items, a linear

search requires 1000 comparisons in the worst case, on the other hand, a binary
search requires 10 comparisons at most.

The binary_search method in the <algorithm> header file performs binary
searching. It tests whether there is an element in a sorted range that is equal to a
target value. If the target value is in the range binary_search method returns true,
otherwise it returns false.

The following program demonstrates how to use tthe binary_search method.

//PROG: c5_07binsearch.cpp
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()
{

vector<int> v;
v.push_back(1);
v.push_back(13);
v.push_back(4);
v.push_back(7);

sort(v.begin(), v.end());

97Arrays and Strings

if(binary_search(v.begin(), v.end(), 4))
cout<<"found."<<endl;

else
cout<<"not found."<<endl;

system("pause");
return 0;

}

found.

Exercise: Binary Search

The binary_search method returns true if the target value exists in the given
range. In the case you need any position of the target in the range, you must
make your own version of a binary search function.

The binary search begins by comparing the target value to the value in the
middle of the vector; because the values are sorted, it is clear that whether the
target value would belong before or after that middle value, and the search then
continues through the correct half in the same way.

Complete the following user-made binary search function, so that it returns the
position of the target value or -1 if the target is not in the vector.

int binarySearch(vector<int> v, int target)
{

int first=0, last=v.size()-1;
while(first<=last)
{

int middle = (_____________)/2;
if (v[middle] == target)

return middle;
if (target < v[middle])

last = middle-1;
else

first = _____________;
}
return _____________;

}

Programming with C++98

Sorting Arrays
Sorting data (arranging items in order) is one of the most important and fundamental
applications. As we have seen in binary search, having sorted data facilitates the
processing of information. All the words in a dictionary or the names in a phone book
are sorted in alphabetical order. You can sort the files in a folder in your computer by
their names, dates, types or sizes.

C++ provides the sort method to sort the vectors and other containers. The sort
method is defined in the <algorithm> header file. The following statement arranges
the elements of the vector into ascending order :

sort(v.begin(), v.end());

You should add a comparison criterion as a third parameter of the sort method to
arrange the items in descending order:

sort(v.begin(), v.end(), greater<int>());

You must add <functional> header file for greater<int>().

The following program demonstrates using the sort method.

//PROG: c5_08sort.cpp
#include<iostream>
#include<vector>
#include<functional> //for greater<int>()
#include<algorithm>
using namespace std;

Exercise: Vectors

Write a function which takes two vectors as parameters and checks if the
second vector contains all of the elements of the first vector. If yes returns true,
otherwise returns false.

bool test(TIntVec v1, TIntVec v2)
{

.

.

.
}

input : v1 = 3 6 7 3 8 7
v2 = 2 9 4 8 5 6 7 3 1

output : yes

99Arrays and Strings

typedef vector<int> TIntVector;
void print(TIntVector);

int main()
{

vector<int> v;
v.push_back(1);
v.push_back(13);
v.push_back(4);
v.push_back(7);

cout<<"The original vector: ";
print(v);
sort(v.begin(), v.end()); //increasing order
cout<<"After sorting in ascending order: ";
print(v);
sort(v.begin(), v.end(), greater<int>()); //decreasing order
cout<<"After sorting in descending order: ";
print(v);

system("pause");
return 0;

}

void print(TIntVector v)
{

for(int i=0; i<v.size(); i++)
cout<<v[i]<<" ";

cout<<endl;
}

The original vector: 1 13 4 7
After sorting in ascending order: 1 4 7 13
After sorting in descending order: 13 7 4 1
Press any key to continue . . .

Once you get a vector in
ascending order, you may use
the reverse method to get the
vector sorted in descending
order.

reverse(v.begin(),
v.end());

Exercise: Selection Sort

There exist many sorting algorithms in programming. The selection sort
algorithm is the most intuitive one. The idea of selection sort is rather simple:
you repeatedly find the next smallest element in the array and move it to its final
position in the sorted array.

Step 1: Find the minimum value in the list
Step 2: Swap it with the value in the first position
Step 3: Repeat the steps above for remainder of the list (starting at the second
position)

Programming with C++100

Complete the following selectionSort function:

void selectionSort(TIntVector &v)
{

.

.

.
}

Research: Sorting Algorithms

Study the sorting algorithms listed below, from the Internet and other
resources.

� Bubble Sort

� Insertion Sort

� Counting Sort (Pigeon Hole Sort)

� Quick Sort

� Merge Sort

String Class
Remember that a character is any symbol that can be read from the keyboard. A
string is a series of characters which is stored in consecutive bytes in memory. So
that any input sequence from keyboard can be expressed as a string.

C++ has a string class that is defined in the <string> header file to manipulate the
strings. You have already learned how to read and print the strings with cin and cout
where cout prints all the string, whereas, cin reads a one-word string. Use the
getline() method to read the whole string, instead of cin. getline() gets a line of text
from the input stream.

Reading and Printing Strings

The following program demonstrates how to declare, initialize, read and print the
characters and strings.

//PROG: c5_09string.cpp
#include<iostream>
#include<string>
using namespace std;

Strings are written in double
quotation marks, and
characters are written in single
quotation marks in C++.

int main()
{

char ch = ‘a’;
string s = “Zambak”;
.
.
.

}

101Arrays and Strings

int main()
{

string s1= "Hello Word", s2, s3;
cout<<"Enter a string: ";
getline(cin, s2); //reads a line of text.
cout<<"Enter the same string: ";
cin >> s3; //reads only the first word.

cout<<"s1 = "<<s1<<endl;
cout<<"s2 = "<<s2<<endl;
cout<<"s3 = "<<s3<<endl;

system ("pause");
return 0;

}

Enter a string: C++ is an OOP language.
Enter the same string: C++ is an OOP language.
s1 = Hello Word
s2 = C++ is an OOP language.
s3 = C++
Press any key to continue . . .

String Manipulation
Strings are actually the arrays of characters. Most of the vector class methods and
string class methods are common. Assignment (=) and relational (==, <, <=, >,
>=, !=) operators are used with strings. Strings can be passed to a function as a
value or reference, and any function can return a string value.

String class has a find() and a length() method that are not available for vectors. The
member function find() searches a string in a forward direction for the first
occurrence of a substring that matches a specified sequence of characters. The
length() member function is the same as size(). In addition the find() method,
find_first_not_of(), find_first_of(), find_last_not_of(), and find_last_of() methods are
available with the string class.

The following program demonstrates how to handle strings in C++.

//PROG: c5_10string.cpp
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;

string spaces(string);
int main()
{

string name;

The getline() function can be
used with a delimiter to read
the first part of the input
stream until the delimiter. The
following statement reads only
the first word of the input text.

getline(cin, s, ‘ ‘);

Programming with C++102

cout<<"Your name and surname?";
getline(cin, name);

cout<<"Your name with spaces: ";
cout<<spaces(name)<<endl;

int pos = name.find("ARM");
if (pos == -1)

cout<<"ARM is not in your name"<<endl;
else

cout<<"ARM was found at the position "<<pos<<endl;

cout<<"Your name in reverse order: ";
reverse(name.begin(), name.end());
cout<<name<<endl;

system ("pause");
return 0;

}
//--
//insert a space between the characters
string spaces(string s)
{

string s2;
for (int i=0; i<s.length(); i++)
{

s2.push_back(s[i]);
s2.push_back(' ');

}
return s2;

}

Your name and surname?ALAN FARMER
Your name with spaces: A L A N F A R M E R
ARM was found at the position 6
Your name in reverse order: REMRAF NALA
Press any key to continue . . .

Example: Palindromes

A palindrome is a word, phrase, number or any other sequence of units which
has the property of reading the same in either direction. “MADAM” is a
palindrome but “ADAM” is not.

Make a program that reads a text from an input file and prints the lines that are
palindrome into another file.

103Arrays and Strings

//PROG: c5_11palindrome.cpp
#include<fstream>
#include<string>
#include<algorithm>
using namespace std;

ifstream fin("palin.in");
ofstream fout("palin.out");

int main()
{

string s1, s2;
while(!fin.eof()) //continue if not end of file.
{

getline(fin,s1);
s2 = s1;
reverse(s2.begin(), s2.end());
if (s1==s2) //reverse of a palindrome is itself

fout<<s1<<endl;
}
return 0;

}

MADAM
ADAM
EY EDIP ADANADA PIDE YE
THIS IS A PALINDROME
MALAYALAM
PALINDROME
A GUNG A GNUG A

MADAM
EY EDIP ADANADA PIDE YE
MALAYALAM
A GUNG A GNUG A

palin.in palin.out

Exercise: Palindrome

Remake the palindrome program above. Your program should test a line of
text if it is a palindrome without using the reverse method. Compare the
characters of the line yourself.

Programming with C++104

Exercise: Names

Make a program that reads the names of the students in your classroom, and
then sorts the names in alphabetical order.

George VICTORIA
Lara NIKOLAEVICH
Naif SHERIF
Baden JANNINGS
Vanna NAYOR
Abiba JUMBA
Macarena ALFONSO

Abiba JUMBA
Baden JANNINGS
George VICTORIA
Lara NIKOLAEVICH
Macarena ALFONSO
Naif SHERIF
Vanna NAYOR

names.in names.out

An array is a container object that holds a fixed number of values of a single type. Arrays can be with one
(vector), two (matrix), or more dimensionals. The length of a static array is established when the array is
created. After creation, its length is fixed. The C++ vector class lets us create and manipulate dynamic arrays.
Dynamic array is a data structure that can be resized and allows elements to be added or removed.

C++ supports C-style strings that are the static array of characters. However, in the C++ programming
language, the string class is a standard representation for a string of text.

Vector class, string class, and STL algorithms provides plenty of vector and string manipulation methods. Some
of these methods are size, resize, push_back, begin, end, assign, reverse, insert, at, sort, and find.

Instances of vector class and string class can be passed to a function in the same manner the standard
variables are passed. That is, they can pass by value or they can pass by reference. On the other hand, keep
in mind that, static arrays are always passed to a function by reference.

The Standard Template Library (STL) is a software library available with C++. It provides some common data
structures as containers, and the methods to handle the containers as algorithms.

In computer science, sorting is the process of putting elements of a list in a certain order. Efficient sorting is
important to optimize the use of other algorithms that require sorted lists to work correctly.

The act or process of finding a particular item of an array is called searching. Linear search and binary search
are two well-known searching algorithms: Linear search operates by checking every element of a list one at a
time in sequence until a match is found. A faster way to search a sorted array is to use a binary search. The
idea is to look at the element in the middle. If the key is equal to that, the search is finished. If the key is less
than the middle element, do a binary search on the first half. If it's greater, do a binary search of the second
half.

SUMMARY

105Arrays and Strings

REVIEW QUESTIONS

1. Which of the array declaration is wrong?
a) int a[n];
b) int a[5];
c) vector<int> a;
d) vector<int> a(5);

2. Which of the following statements, initializes the
array a to ten zeros?
a) int a[10];
b) vector<int> a(10);
c) int a[10] = {0}
d) int a[] = {0};

3. What is the output of the following program?
#include<iostream>
#include<vector>
using namespace std;

int main()
{

vector<int> v;
v.push_back(0);
for (int i=1; i<5; i++)

v.push_back(i+v[i-1]);
int sum=0;
for(int i=0; i<v.size(); i++)

sum += v[i];
cout<<sum;
return 0;

}

4. What is the output of the following program?
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()

{
vector<int> v;
v.push_back(7);
v.push_back(4);
v.push_back(5);
v.push_back(1);
sort(v.begin(), v.end());
cout<<v[2];
return 0;

}

5. What is the output of the following program?
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

int main()
{

vector<int> v;
v.push_back(7);
v.push_back(4);
v.push_back(5);
v.push_back(1);
sort(v.begin(), v.end());
cout<<*(find(v.begin(),v.end(),4));
return 0;

}

6. What is the output of the following program?
#include<iostream>
#include<vector>
using namespace std;

typedef vector<int> TIntVec;
void function1(TIntVec &);
int function2(TIntVec, int);

Programming with C++106

int main()
{

TIntVec v;
function1(v);
cout<<function2(v,2)<<endl;
cout<<function2(v,3)<<endl;
return 0;

}
void function1(TIntVec &v)
{

v.push_back(5);
v.push_back(8);
v.push_back(9);
v.push_back(1);
v.push_back(6);

}
int function2(TIntVec v, int k)
{

int res=0;
for(int i=0; i<v.size(); i++)

if (v[i]%k == 0)
res += v[i];

return res;
}

7. What does the following program do?
#include<iostream>
#include<vector>
#include<time.h>
using namespace std;

typedef vector<int> TIntVec;
void abc(TIntVec &,int);
int main()
{

srand(time(NULL));
TIntVec v1, v2;
int counter = 0, k;
cout<<"size =?";
cin >> k;
do
{ abc(v1, k);

abc(v2, k);
counter++;

}while(v1 != v2);
cout<<"After "<<counter<<" tries.”;
return 0;

}
void abc(TIntVec &v, int k)
{

v.resize(k);
for(int i=0; i<k; i++)

v[i] = rand()%2;
}

8. The islower and isupper functions determine if a
particular character is in lower case, or upper
case. The tolower and toupper functions convert a
character to lower case, or uppercase. What does
the following program do?
#include<iostream>
#include<string>
#include<time.h>
using namespace std;
int main()
{

string s;
cout<<"Enter a line of text:";
getline(cin, s);
for (int i=0; i<s.length(); i++)
{

if (islower(s[i]))
s[i] = toupper(s[i]);

else if (isupper(s[i]))
s[i] = tolower(s[i]);

}
cout<<s<<endl; return 0;

}

107Arrays and Strings

1. (Data Compressor) Data compression is the reduction in size of data in order to
save space or transmission time. There are many data compression algorithms
and programs. The files with .zip extension are compressed files, and the .jpeg
format files are compressed pictures.

You are asked to make a program to compress a line of text. Your program
compresses only consecutive repeating characters. If any character is
consecutively repeating, your program should replace those repeating part with
the character itself and a number denoting the occurrence of the letter. Spaces will
not be compressed.

Sample Input : aaccccabbbccaaaaa xxxxyyyxxxyyyyyyyyyy

Sample output : a2c4ab3c2a5 x4y3x3y10

2. (Magic Square) A magic square is a subject of recreational

mathematics. It is an NxN matrix of the integers 1 to N2 such
that the sum of every row, column and diagonal is the same. In
the figure there is an example magic square for the case N=5.
In this example the common sum is 65.

When N is odd, H. Coxeter has given a simple rule for
generating a magic square: Start with 1 in the middle of the top
row; then go up and left assigning numbers in increasing order
to empty squares; if you fall off the square imagine the same
square as tiling the plane and continue; if a square is occupied,
move down instead and continue.

Make a program that gets N from the file “magic.in” and creates
and writes the magic square into the file “magic.out” in a tabular format like in the sample output.

PROGRAMMING PROBLEMS

15 8 2 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

1 2 3 4 5

1

2

3

4

5

3 6 1 8
7 5 3
2 9 4

magic.in magic.out

Programming with C++108

3. (Lattice Multiplication) Lattice multiplication is
algorithmically equivalent to long multiplication. It requires
the preparation of a lattice (a grid drawn on paper) which
guides the calculation and separates all the multiplications
from the additions.

As shown in the example, the multiplicand (256) and
multiplier (32) are written above and to the right of a lattice.
During the multiplication phase, the lattice is filled in with
two-digit products of the corresponding digits labeling each
row and column: the tens digit goes in the top-left corner.
During the addition phase, the lattice is summed on the
diagonals. Finally, if a carry phase is necessary, the answer
as shown along the left and bottom sides of the lattice is converted to the normal form by carrying ten's
digits as in long addition or multiplication.

Make a program that gets two long integers (up to 50 digits) and multiplies them and prints out the result.

Sample Input : 123456789 987654321

Sample output : 121932631112635269

4. (Football Tournament) A football tournament is organized among n teams. Teams
are numbered from 1 to n. Each team will play with all others once. If n is an even
number, there will be n tours, if it is an odd number, there will be n-1 tours. You
are asked to arrange the fixture of the tournament. Your program will read N as
the number of teams.

Your program should display a table of n lines. jth number in ith line representing the team that will play

with ith team in jth week. Apparently if ith team is playing with k in jth week, team k must be playing with

with ith team in jth week. If ith team is not playing in jth week then jth number of ith line must be 0.

3 2 3 0
1 0 3
0 1 2

football.in football.out

109Arrays and Strings

5. (Morse Code) Morse code is a system of representing letters,
numbers and punctuation marks by means of a code signal (dots and
dashes) sent intermittently. It was developed by Samuel Morse and
Alfred Vail in 1835. It is used as a standard code in telegraphs.

Make a program that reads a line of text containing only the upper
case letters of the English alphabet, and encodes the text into Morse
code. Leave a space between each morse-coded letter and three
spaces each morse-coded word.

Also write a verification program that converts the morse code back
into the original text.

Sample Input : MORSE CODE

Sample output : -- --- .-. -.-. --- -.. .

6. (Text Justifying) Aligning text to both left and right sides and adding extra space
between words as necessary is a common feature for advanced word processor
programs. You are going to format a text document in this problem. Your program
should justify the text on both sides, and minimize the biggest space between any
two consecutive words in a line of the document.

The first line of the input file (unformatted document) has an integer number N
(1<N<=100) indicating the length of the lines in the output file (formatted document). Each line must
start with a word and end with a word in the formatted document (if there is only one word in the line, you
must left justify it). Skip the blank lines, don’t transfer the words from one line to another line, don’t
change the order of the words in a line, and don’t concatenate the words.

You must calculate the quality point of your task after you finish it. At the beginning, the quality point is
zero. If there is only one space between two consecutive words in a line, you must not change the quality
point. If there are S (S>1) spaces between any two consecutive words in a line, you must increase your
quality point by S*S. If there is only one word in a line, do not change the quality point. For the empty
lines don’t change the quality mark. You must write the quality point at the end of the file as a separate
line. The smaller the quality point is, the better it is.

20
HELLO!
MY DEAR STUDENTS.

I HOPE YOU
LIKE THE QUESTION.

HELLO!
MY DEAR STUDENTS.
I HOPE YOU
LIKE THE QUESTION.
93

text.in text.out

Programming with C++110

FLOWCHART PROGRAMMING (OPTIONAL)

Arrays and Strings
Arrays contain a sequence of other variables. Each variable can be accessed
through an index, following the syntax: ArrayName [VariableIndex]. The indices are
natural numbers (numbered from 0). FCPRO supports only the static arrays. Arrays
may have one dimension as well as two or more dimensions. Strings contain a
sequence of characters. FCPRO lets you read and print strings. But doesn’t let you
access the individual string elements.

Example: Bubble Sort

Bubble sort is a simple sorting algorithm. It works by repeatedly stepping
through the list to be sorted, comparing two items at a time and swapping them
if they are in the wrong order. The pass through the list is repeated until no
swaps are needed, which means the list is sorted.

The bubble sort algorithm
gets its name from the way
smaller elements gradually
“bubble” their way upward to
the top of the array like air
bubbles rising in water, while
the larger elements sink to the
bottom of the array.

Programming with C++112

Introduction
Struct (short for structure) is an aggregate data type for grouping related variables
together. Structs may contain any kind of data type including other structs but not
files. For example the following struct contains the related information for a person.

struct TPerson
{

string name;
string surname;
int age;
string phoneNumber;
string address;
char gender; //’M’ or ‘F’

};

The keyword struct denotes the structure definition. Struct declares a new data-type.
The identifier TPerson is the name of the structure and is used to declare the
variables type of TPerson. The variables declared between the braces are the
structures’ members or fields.

Unlike with an array, the data items in a struct can be of different types. Also, with a
struct the data items are identified by field name, whereas with an array the data
items are identified through the use of an index number.

Declaring Structs and Accessing Members
The dot operator (.) is used to access members of structures. Each member of a
structure can be used just like a normal variable, but its name will be a bit longer;
name of the structure variable + ‘.’ + name of the member. Here the dot is an
operator which selects a member from a structure.

Reading and Printing Structures

The following example defines a structure that is TPerson and declares a variable
person type of TPerson. Then the function getData reads the members of person,
and the function print displays the members of person on the screen.

/*
PROG: c6_01person.cpp
person structure
*/
#include <iostream>
#include <string>

using namespace std;

Mergen

Micheal

25

987 378971

H-14, Green Park
Extension Delhi - 110016

M

A Sample TPerson

113Structures 113

The getline() function reads a
line of text and stores it into a
string variable. cin reads only
a word. If you need to read
more than a single word, use
the getline() function.

You can initialize structures
while the declaration.

struct TPoint
{

int x, y;
};
int main()
{

TPoint p = {1, 2};
cout<<p.x<<
" "<<p.y<<endl;

system("PAUSE");
return 0;

}

1 2

struct TPerson
{

string name;
string phoneNumber;
string address;
char gender; //'F' or 'M'
int age;
long ID;

};

void getData(TPerson &); //Call by reference
void print(TPerson); //Call by value

int main()
{

TPerson person; //Person is an variable type of TPerson
getData(person); //Read the person
print(person); //Print the person

system ("pause");
return 0;

}
//---
void getData(TPerson &person)
{

cout<<"Name = ?";
getline(cin, person.name);
cout<<"PhoneNumber = ?";
getline(cin, person.phoneNumber);
cout<<"Address = ?";
getline(cin, person.address);
cout<<"Gender [M or F] = ?";
cin >> person.gender;
cout<<"Age = ?";
cin >> person.age;
cout<<"ID = ?";
cin >> person.ID;

}
//---
void print(TPerson person)
{

cout<<endl<<"Name is "<<person.name<<endl;
cout<<"PhoneNumber is "<<person.phoneNumber<<endl;
cout<<"Address is "<<person.address<<endl;
cout<<"Age is "<<person.age<<endl;
if (person.gender == 'M')

cout<<"Gender is Male"<<endl;
else cout<<"Gender isFemale"<<endl;
cout<<"ID is "<<person.ID<<endl;

}

Programming with C++114

Hierarchical Structures
Structures can be member of other structures. This kind of usage creates a
structures tree. There are parent and child structures in a structures tree. A child
structure is a member of its parent structure. TPerson is the parent structure of
TStudent and TTeacher structures in the following example. Any child structure has
all members of its parent and, in addition, usually has its own members as well.

Name = ?Alan Black
PhoneNumber = ?505 4789822
Address = ?New Avenue Park Str. No:44
Gender [M or F] = ?M
Age = ?15
ID = ?30958070351

Name is Alan Black
PhoneNumber is 505 4789822
Address is New Avenue Park Str. No:44
Age is 15
Gender is Male
ID is -858993460
Press any key to continue . . .

115Structures

Example: Struct of Structs

This example demonstrates how to declare a struct that has another struct as
a member. TStudent and TTeacher structures have common members (fields)
and different members. The common members are the personal information.
Those common members are grouped within a new structure, that is TPerson,
and included in both TStudent and TTeacher structs as members. Thus,
TPerson is the parent of both TStudent and TTeacher.

The following program prompts a menu to the user to add a new student, to add
a new teacher or to exit the program. It writes all the input to the file “school.txt”
for later use.

/*
PROG: c6_02structofstruct.cpp
*/
#include <iostream>
#include <string>
#include <fstream>
using namespace std;

struct TPerson
{

string name;
string phoneNumber;
string address;
char gender; //'F' or 'M'
int age;
long ID;

};

struct TStudent
{

string role;
TPerson person;
long schoolID;
string grade;
string room;
string club;

};

struct TTeacher
{

string role;
TPerson person;
string subject;
string guidanceClass;
string club;

};

Programming with C++116

int menu();
void newStudent();
void newTeacher();
TStudent getStudent();
TTeacher getTeacher();
void printStudent(TStudent);
void printTeacher (TTeacher);

ofstream fout("school.txt");

int main()
{

int choice;
do
{

choice = menu();
switch(choice)
{
case 1: newStudent(); break;
case 2: newTeacher(); break;
};

}
while(choice!=3);

fout.close();
return 0;

}
//---
int menu()
{

int choice;
system("cls");
cout<<"1: New Student"<<endl;
cout<<"2: New Teacher"<<endl;
cout<<"3: Quit"<<endl<<endl;
cout<<"Your choice? ";
cin >> choice;
return choice;

}
//---
void newStudent()
{

TStudent student;
system("cls");
student = getStudent();
printStudent(student);

}
//---
void newTeacher()
{

system(“cls”) is a Windows
system function that clears the
screen.

117Structures

TTeacher teacher;
system("cls");
teacher = getTeacher();
printTeacher(teacher);

}
//---
TStudent getStudent()
{

TStudent std;
std.role = "Student";
getline(cin, std.person.name);
cout << "Name and Surname= ?";
getline(cin, std.person.name);
cout << "PhoneNumber = ?";
getline(cin, std.person.phoneNumber);
cout << "Address = ?";
getline(cin, std.person.address);
cout << "Gender [M or F] = ?";
cin >> std.person.gender;
cout << "Age = ?";
cin >> std.person.age;
cout << "ID = ?";
cin >> std.person.ID;
cout << "schoolID = ?";
cin >> std.schoolID;
cout << "Grade = ?";
cin >> std.grade;
cout << "Room = ?";
cin >> std.room;
cout << "Club = ?";
cin >> std.club;

return std;
}
//---
TTeacher getTeacher()
{

TTeacher teacher;
teacher.role = "Teacher";
getline(cin, teacher.person.name);
cout << "Name and Surname= ?";
getline(cin, teacher.person.name);
cout << "PhoneNumber = ?";
getline(cin, teacher.person.phoneNumber);
cout << "Address = ?";
getline(cin, teacher.person.address);
cout << "Gender [M or F] = ?";
cin >> teacher.person.gender;
cout << "Age = ?";
cin >> teacher.person.age;

Programming with C++118

cout << "ID = ?";
cin >> teacher.person.ID;
cout <<"Subject = ?";
cin >> teacher.Subject;
cout <<"guidanceClass = ?";
cin >> teacher.guidanceClass;
cout << "Club = ?";
cin >> teacher.club;

return teacher;
}
//---
void printStudent(TStudent std)
{

fout << std.role<<endl;
fout << std.person.name<<endl;
fout << std.person.phoneNumber<<endl;
fout << std.person.address<<endl;
fout << std.person.gender<<endl;
fout << std.person.age<<endl;
fout << std.person.ID<<endl;
fout << std.schoolID<<endl;
fout << std.grade<<endl;
fout << std.room<<endl;
fout << std.club<<endl<<endl;

}
//---
void printTeacher(TTeacher teacher)
{

fout << teacher.role<<endl;
fout << teacher.person.name<<endl;
fout << teacher.person.phoneNumber<<endl;
fout << teacher.person.address<<endl;
fout << teacher.person.gender<<endl;
fout << teacher.person.age<<endl;
fout << teacher.person.ID<<endl;
fout << teacher.Subject<<endl;
fout << teacher.guidanceClass<<endl;
fout << teacher.club<<endl<<endl;

}

1: New Student
2: New Teacher
3: Quit

Your choice? 1

119Structures

A sample “school.txt” file with two records:

Student
Maria Flora
389123894
Center Boulevard, A-1 Block, No:59
F
16
3082889944
2007135
10
A
Origami

Teacher
Alan Black
505 3398934
New Avenue, Park Str. No:44
M
45
309889994
Computer
10-A
Programming

Exercise: Struct of Structs

Modify the program above so that each student and teacher have a birthday
instead of age. Use a separate struct for birthday and address like below:

struct TBirthday
{

short year, month, day;
};

struct TAddress
{

string city, state;
string streetAddress;
int zipCode;

};

Programming with C++120

Exercise: Points

Make a program that reads coordinates (x, y) of some points on the plane and
prints the point that is closest to the origin (0, 0). Use a struct for points.

struct Tpoint
{

int x, y;
};

Array of Structs
An array of structures is useful for temporarily storing a sequence of structures. For
example, the following program reads many points as structs and keep them
temporarily in an array to calculate the maximum distance between any two points.

Example: Distance between Two Furthest
Points

The following program reads N points from the file “points.txt” and then
calculates and prints the distance between two furthest points.

/*
PROG: c6_03distance.cpp
The longest distance between two points. Read N points from the
file points.txt and print the result to the standard output.
*/
#include <iostream>
#include <string>
#include <fstream>
#include <vector>
#include <math.h>
using namespace std;

struct TPoint
{

int x, y;
};

void getPoints(); //read the points from the
file to an array

float go(); //calculate the maximum distance

121Structures

//return the distance between two points
float calcDistance(TPoint, TPoint); //function prototype

vector <TPoint> points; //global declaration
//---
int main()
{

getPoints();
cout <<"The biggest distance between two points is ";
cout << go() <<endl;

system("pause");
return 0;

}
//---
void getPoints()
{

ifstream fin ("points.txt");
int N; //number of the points

fin >> N;
for (int i=1; i<=N; i++)
{

TPoint p; //a single point
fin>> p.x>> p.y;
points.push_back(p);

}
fin.close(); //close the file "points.txt"

}
//---
float go()
{

float res = calcDistance(points[0], points[1]);

for(int i=0; i<points.size()-1; i++)
for(int j=i+1; j<points.size(); j++)
{

float tempDistance = calcDistance(points[i], points[j]);
if (tempDistance > res)

res = tempDistance;
}

return res;
}
//---
float calcDistance(TPoint p1, TPoint p2)
{

return sqrt((float)(p1.x-p2.x)*(p1.x-p2.x) +
(p1.y-p2.y)*(p1.y-p2.y));

}

A Vector of Struct

Programming with C++122

A sample “points.txt” file:

5
0 0
1 1
0 -5
3 3
5 5

The output:

The biggest distance between two points is 11.18
Press any key to continue . . .

Exercise: Array as a Struct Member

Modify the program above so that instead of an array of struct use a record
that keeps all the points in a member array like below:

struct TPoints
{

float maxDistance;
vector <int, int> pointArray;

};

Exercise: School Database

Improve the program “struct of structs” in this chapter to fulfill all the
operations below. Do not use any additional file.

1: New Student
2: New Teacher
3: Delete a Record
4: Find
5: Print Students
6: Print Teachers
7: Students by Class
8: Quit

Your choice?

123Structures

A structure is created using the keyword struct.There is a strong relation between structures and classes in
C++. We are going to study it in the classes chapter.

A structure is a collection of one or more variables grouped together under a single name for convenient
handling. The variables in a structure are called members and may have any type, including arrays or other
structures.

Dot operator (‘.’) is used to access elements of a structure. Structures can be used as elements of an array and
parameters of a function as well as a return value of a function.

SUMMARY

REVIEW QUESTIONS

1. Which structure is the best to work with a list of
students in a school? The personal information
and school information is necessary for each
student.
a) struct
b) string
c) struct array
d) int array

2. Which of the following is not true?
a) Any struct can be a member of another

struct.
b) Any struct can be a member of itself.
c) Size of a struct varies depending on its

members.
d) A reference to a struct is allowed.

3. What is the size of the following struct in bytes.
struct TCar
{

char array[10] name;
int year;
int price;
single HP;
single engineVolume;

};

a) 22 b) 20
c) 13 d) 5

4. What is the output of the following program?
#include <iostream>

using namespace std;

struct TTime
{

int hour, minute, second;
};
float mystery(TTime &);

int main()
{

TTime time = {23, 15, 20};
cout << mystery(time)<<endl;
return 0;

}
float mystery(TTime &t)
{

return t.hour*60 + t.minute +
(float) t.second/60;
}

a) 1395 b) 1395.33
c) 23 d) 23.63

Programming with C++124

1. (Sum) Secondary school and high school students usually calculate the sum of the whole numbers
without any difficulties. However; rational numbers may become a nightmare. Write a program that
calculates the sum of several rational numbers given in fractional form like (a/b). Your program must give
the result in the most simplified form.

a/b + c/d = (a*d + b*c)/(b*d)

Input

The first line of input has a single integer N (2<=N<=100) that denotes the number of rational numbers
to be added up. Each of the following N lines contains a pair of integers representing a rational number.
The first number is the numerator (a) and the second number is the dominator (b).

Output

There is a single line with one or two numbers in the output. The first number is the numerator, and the
second number is the dominator of the sum. Do not print the dominator when it is equal to 1. In any step
of the addition process, the simplified numerator and the dominator don’t exceed a 32-bit integer.

2. (Letter Pairs) Your are given N letter pairs. All the letters are capital. If any letter belongs to two different
pairs, those two pairs are considered related each other and put into the same set. Make a program that
finds out all such sets.

PROGRAMMING PROBLEMS

3
1 2
3 4
5 5

9 4

sum.in sum.out

4
A D
F K
A S
K X

A S D
F K X

pairs.in pairs.out

125Structures

3. (Robot) Although humans are far superior, robots are
better at performing some basic repetitive tasks. In
order for a robot to perform a useful function, it must be
programmed. You are asked to write a program for a
robot which packs the incoming boxes.

Some rectangular open boxes are moving in a straight
line on the assembly line. The robot takes the first box
and places the following box into the first box, then the
third box into the second box, and so on. If any box
doesn’t fit inside the prior box, the robot sends a signal
and another robot takes away the already packed
boxes, and the first robot continue the same process
with the next box.

The robot always takes the next available box from the assembly line, without skipping any boxes. The
robot first checks each incoming box to determine if it will fit inside the open box. To fit a box inside
another box, the width, length, and height of the first box must be smaller than the width, length, and
height of the second box. The robot can rotate incoming boxes horizontally at 90 degree angles. The
sides of the boxes are always parallel to each other.

What is the number of the packets after the robot finishes his task?

Input

The first line of input has a single integer N (2<=N<=1000) that denotes number of the boxes to be
packed. Each of the following N lines contains a triple of integers representing the width, length, and
height of a box.

Output

The output has a single integer representing the number of the packets after finishing the task.

7
7 5 3
4 6 2
5 4 5
4 3 3
2 2 2
1 1 1
1 1 1

3

robot.in robot.out

Programming with C++126

4. (Library) Even though digital libraries are taking the role of
classical libraries, classical libraries still retain their importance.
Because so far, only some percentage of information in libraries
have been transferred to a computer-readable form, and many
readers (including me) like to touch, smell and flip the pages of
books.

Computer software eases the burden of librarians. Such a
software may keep titles, categories, authors, price, ISBN,
availability in the library, borrowed day, returning day etc, of the
books, customers information, lending a book, accepting and
returning book, etc. for the librarian.

Make a program for your school library. Some of the operations
your program should perform are below:

� New Book

� New Customer

� Remove a Book

� Remove a Customer

� Search for a book

� Report non-returning books

� List by Category

� List by Author

� Borrow a Book

� Book Return

FLOWCHART PROGRAMMING (OPTIONAL)

Structures
There is no special symbols for structures in flowchart programming. FCPRO
manages structures as standard variables. Whenever you use a dot operator (“.”),
FCPRO understands that the identifier on the left of the operator is the name of a
structure and the identifier on the right of the operator is a member of the structure.

When you are printing and assigning structures in FCPRO, you don’t have to do it
member by member with a dot operator. FCPRO allows you to print and assign
structures directly with their names.

127Structures

Example: Distance

The following flowchart gets (x, y) coordinates of two points on the cartesian
plane and then calculates and displays the distance between them.

Programming with C++128

Example: Names and Ages

The following flowchart reads the names and ages of a list of people and
then sorts and prints the list by ages.

Exercise: Birthdays

Make a flowchart that reads the names and birthdays (year/month/day) of a
list of people and then prints the names of people from the youngest to the
oldest.

Your program should ask the user for the current date.

Programming with C++130

Introduction
Programming has progressed a lot in a very short time. It started with a sequential
programming in which the statements were following each other. Sequential
programs are OK for basic tasks. However, solving a complex task with a sequential
program is a challenging problem. With the increasing complexity of programs,
programmers developed the modular programming technique after sequential
Programming. A module is a sub-program (function in C++) that performs a
specific task. Managing larger programs became easier with the help of modular
programming. The focus of attention in modular programming is on modules
(functions). It became possible for a group of programmers to work on a common
project hence the software engineering concept emerged with modular
programming.

Programmers have developed a new programming technique called Object-
Oriented Programming (OOP). In this technique, computer programs are made up
of objects. Programmers manage complexity by managing the individual object
instead of the whole program. The focus of attention in OOP is on classes. You
should think about how each object will be designed and how these objects interact.
Especially visual programs and the Internet programs increased the complexity of
programming. OOP is the best programming technique to manage such complex
programs.

Understanding Classes and Objects
We had variables and functions to manipulate variables in our programs so far.
Object-Oriented Programming (OOP) encapsulates variables (data) and functions
(methods) into packages called classes.

A class is the formal definition of an object, and an object is an instance of a class.
A class is like a blueprint. Once a class has been defined, objects of that class can
be declared from that class. A builder can build a house out of a blueprint. A
programmer can instantiate (create) an object out of a class.

Member Accessibility
Class member access determines if a class member is accessible by other classes.
Suppose that “day” is a member of class “date”. Class member day can be declared
to have one of the following levels of accessibility:public, private, or protected.

� public: day can be used anywhere by any class.

� private: day can be used only by the members of class date.

� protected: day can be used only by the members of class date, and the
members of classes derived from class A.

Sometimes data members of
a class ares called attributes,
and member functions are
called methods or
behaviours.

There is a strong relation
between structures and
classes in C++. Structures
and classes both are user-
defined data types. Instances
of these data types are known
as objects, and contain data
and methods to manipulate
the data. Classes are used
commonly in convention
when you encapsulate data
and methods.

Members of classes declared
with the keyword class are
private by default. Members of
structures declared with the
keyword struct are public by
default.

Sequential Programming

Modular Programming

Object-Oriented
Programming

131Object-Oriented Programming 131

Class Definition
Classes are described in a class declaration. A class declaration consists of a class
header and body. The class header consists of a class keyword and the class name.
The class body encapsulates the members of the class, which are the data
members and member functions. Usually a class body contains only prototypes of
member functions. Member functions are implemented after the class definition.

The following declaration defines a new class type TDate which has three private
class members and six public member functions. The class members are year,
month and day. The member functions are setYear, setMonth, setDay, getYear,
getMonth, getDay, and print. Traditionally the set methods are used to alter the class
members and get methods are used to retrieve the values of class members.

//PROG: c7_01class.cpp
class TDate
{
private:

int year, month, day;
public:

void setYear(int);
void setMonth(int);
void setDay(int);
int getYear();
int getMonth();
int getDay();
void print();

};
void TDate::setYear(int y)
{

year = y;
}
void TDate::setMonth(int m)
{

month = m;
}
void TDate::setDay(int d)
{

day = d;
}
int TDate::getYear()
{

return year;
}
int TDate::getMonth()
{

return month;
}
int TDate::getDay()
{

return day;
}

The private class members
(year, month, and day) are
hiding from other classes.
They are accessible only via
the public member functions
of the class. This is called data
hiding. Data hiding is a
characteristic of OOP.

A function prototype is a
function declaration or
definition that includes both
the return type of the function
and the types of its
arguments.

132 Programming with C++132

void TDate::print()
{

cout<<day<<"/"<<month<<"/"<<year<<endl;
}

Reading and Printing a Class
The following program defines a class TDate and then creates an object of TDate by
declaring a variable type of TDate (myDate). It demonstrates how to use public
member functions to access the private class members in the main function. Please
notice that, we can directly access only public members of the class. For example
the statement “cout<<myDate.day;” would cause an error in your program.

//PROG: c7_02date.cpp
#include <iostream>
using namespace std;

class TDate //TDate is a class.
{
private:

int year, month, day;
public:

void setYear(int);
void setMonth(int);
void setDay(int);
int getYear();
int getMonth();
int getDay();
void print();

};
void TDate::setYear(int y)
{

year = y;
}
void TDate::setMonth(int m)
{

month = m;
}
void TDate::setDay(int d)
{

day = d;
}
int TDate::getYear()
{

return year;
}
int TDate::getMonth()
{

return month;
}
int TDate::getDay()
{

133Object-Oriented Programming

return day;
}
void TDate::print()
{

cout<<day<<"/"<<month<<"/"<<year<<endl;
}
int main()
{

TDate myDate; //myDate is an object
myDate.setYear(2007);
myDate.setMonth(7);
myDate.setDay(12);
cout<<"Year is "<<myDate.getYear()<<endl;
cout<<"Month is "<<myDate.getMonth()<<endl;
cout<<"Day is "<<myDate.getDay()<<endl;
myDate.print();
system("pause"); return 0;

}

Year is 2007
Month is 7
Day is 12
7/12/2007
Press any key to continue . . .

Exercise: Date Format

Modify the print function of the program above so that it prints the date in
the format:

June 12, 2007

Example: Distance

Make a program that gets the coordinates (x, y) of a
point and prints the distance between the origin and
the point.

Programming with C++134

//PROG: c7_03distance.cpp
#include <iostream>
#include <math.h>

using namespace std;

class TPoint
{
private:

int x, y;
public:

void setX(int);
void setY(int);
double distance();

};
void TPoint::setX(int xx)
{

x=xx;
}
void TPoint::setY(int yy)
{

y=yy;
}
double TPoint::distance()
{

return sqrt((double)x*x + y*y);
}

int main()
{

TPoint p;
int x, y;
cout <<"x and y =?";
cin >> x >> y;
p.setX(x);
p.setY(y);
cout <<"The distance is "<<p.distance()<<endl;

system("pause");
return 0;

}

x and y =?3 2
The distance is 3.605
Press any key to continue . . .

135Object-Oriented Programming

Exercise: The Longest Distance

Make a program to calculate the longest distance between any two points in
a set of points. Your program reads x and y coordinates of the points from the
file points.in and write the result into the file points.out.

Use an array of class (TPoint) in your program. Modify the distance function of
TPoint to calculate the distance between two points.

The prototype of the function is:
double distance(TPoint);

The implementation of the function is:
Double TPoint::distance(TPoint p2)
{

double sqrt((p2.x –x)*(p2.x-x) + (p2.y-y)*(p2.y-y));
}

The Class Constructor and Initializing Class Members

A constructor is a special method on a class that initializes the class members.
Constructors have the same name as their class and is executed whenever that
object comes into existence. You do not specify a return type for a constructor.

The following program calculates the distance from a point to the origin. The point is
been initialized to (3, 4) in the constructor function. The other functions (setX, setY,
and distance) have been implemented directly in the body of the class.

//PROG: c7_04constructor.cpp
#include <iostream>
#include <math.h>
using namespace std;

class TPoint
{
private:

int x, y;
public:

TPoint(){ x=3; y=4;} //Constructor function
void setX(int xx){ x=xx;}
void setY(int yy){ y=yy;}
double distance()
{

return sqrt((double)x*x + y*y);
}

};

Destructors are functions
with no arguments
(parameters) that are called
whenever an object of the
class is destroyed.
Destructors are declared with
the same name as the class
except that they are preceded
with a "~". All the objects are
destroyed when the program
is over.

class TPoint
{
private:

int x, y;
public:

TPoint(){ x=3; y=4;}
~TPoint()
{ cout<<”bye!”;}
.
.
.

Programming with C++136

int main()
{

TPoint p;
cout <<"The distance is "<<p.distance()<<endl;
system("pause");
return 0;

}

The distance is 5
Press any key to continue . . .

Object-Oriented Techniques
Object-oriented programming is built on three pillars: encapsulation, inheritance,
and polymorphism.

a. Encapsulation and Data Hiding

OOP encloses data and the functions manipulate that data all within an object
Holding the data and the related method in the same container is called
encapsulation. Although classes contain both data and functions, not all of the class
is accessible to other classes. Programmers let other classes access only the public
methods of a class, and keep the rest of the class hidden in a private section. For
example, let’s think a TV set as an object. You never need to open it to operate it,
instead the remote controller or the buttons on TV are enough to operate the TV set.

b. Inheritance

New classes can be created from existing classes. This technique provides software
re-usability to save time in program development. The new class inherits the data
members and member functions of the existing class. The new class is called
“derived class” and the existing class is called “base class”. A derived class can add
new data members and member functions or its own, or override its inherited
methods. Thus, a derived class is more specific than its base class.

c. Polymorphism

There are two main advantages of inheritance: code reuse and polymorphism.
C++ and other OOP languages allow objects of different types to respond
differently to the same function call. This feature is called polymorphism. Derived
classes override the methods of base classes in polymorphism. For example, let
TRectangle and TTriangle classes be two different derived classes of the base class
TShape, and let calculateArea be a method of the class TShape. The derived classes
TRectangle and TTriangle override the calclateArea method to calculate their own
areas.

Overriding is replacing a
method in a base class with a
specific version in a derived
class. That is, redefining a
method from a parent class in
a child class.

Encapsulation involves
hiding data of a class and
allowing access only through
a public interface.

Don't confuse the concepts of
overloading and overriding.

Overloading deals with
multiple methods in the same
class with the same name but
different parameter lists.

Overriding deals with two
methods, one in a parent
class and one in a child class,
that have the same name and
same parameter lists but
different operator definition.

137Object-Oriented Programming

Inheritance
Object-oriented programming allows classes to inherit commonly used class
members and member functions from other classes. In the following example
TStudent class is derived from TPerson class. Thus, TPerson is the base class, and
TStudent is the derived class.

There are three types of inheritance: public, protected, and private. Protected and
private inheritance are used rarely and they are beyond the scope of this book.

In the public inheritance, public members of the base class become public members
of the derived class and protected members of the base class become protected
members of the derived class. Private members are not inherited. They can be
accessed with the help of public methods of the base class.

The syntax for creating a derived class is simple. At the header of your class
declaration, add semicolon (“:”) and public keyword, followed by the name of the
class to inherit from:

class TStudent:public TPerson //TPerson is the base class

//PROG: c7_05inheritance.cpp
#include <iostream>
#include <string>
using namespace std;

class TPerson //base class
{
protected:

string nameSurname;
int age;
char gender; //'M' or 'F'

public:
void setNameSurname(string ns){ nameSurname =ns;}
void setAge(int a){ age=a;}
void setGenger(char g){ gender = g;}
string getNameSurname(){return nameSurname;}
int getAge(){ return age;}
char getGender(){ return gender;}

};

class TStudent:public TPerson //public inheritance
{
private:

long schoolID;
int grade;
string classRoom;

public:
void setSchoolID(long id){schoolID=id;}
void setGrade(int g){grade=g;}
void setClass(string c){classRoom=c;}
long getSchoolID(){return schoolID;}

Programming with C++138

int getGrade(){return grade;}
string getClass(){return classRoom;}

};

int main()
{

TPerson person;
person.setNameSurname("Alan George is a");
person.setAge(17);
person.setGenger('M');
cout<<person.getNameSurname()<<" ";
cout<<person.getAge()<<" years old, ";
if (person.getGender()=='M')

cout<<"boy."<<endl;
else cout<<"girl."<<endl<<endl;

TStudent student;
student.setNameSurname("Maria Orwell is a");
student.setAge(16);
student.setGenger('F');
student.setSchoolID(2007195);
student.setGrade(10);
student.setClass("B");
cout<<student.getNameSurname()<<" ";
cout<<student.getAge()<<" years old, ";
if (student.getGender()=='M')

cout<<"boy."<<endl;
else cout<<"girl."<<endl;
cout<<"ScoolID is "<<student.getSchoolID()<<", ";
cout<<"grade is "<<student.getGrade()<<", ";
cout<<"classroom is "<<student.getClass()<<"."<<endl;

system("pause");
return 0;

}

Alan George is a 17 years old, boy.

Maria Orwell is a16 years old, girl.
ScoolID is 2007195, grade is 10, classroom is B.
Press any key to continue . . .

Polymorphism
Base classes and virtual functions are key concepts in polymorphism. A virtual
function is a prototype of a function preceding with the keyword virtual in the generic
base class. The derived classes override those virtual functions so that the same
function in different derived classes performs the same task in a specific way.

139Object-Oriented Programming

For example, in the following program, base class TShape contains the getArea
virtual function. Assume that TRectangle, TTriangle and TCircle, are all derived
classes from TShape. Now the member function getArea() takes a different action
depending on the shape.

/*
PROG: c7_06polymorphism
Virtual functions, function Overriding and Polymorphism
*/
#include<iostream>
#include<string>
using namespace std;

class TShape //base class
{
protected: //class members are protected

int width, height;
public:

virtual double getArea() {return 0;} //virtual function
virtual void set(int, int){}; //virtual function

};

class TRectangle:public TShape //derived class
{
public:

double getArea() //polymorphic function
{

return width*height;
}
void set (int a, int b) //polymorphic function
{

width = a;
height = b;

}
};

class TTriangle:public TShape //derived class
{
public:

double getArea() //polymorphic function
{

return (double)width*height/2;
}
void set (int a, int b) //polymorphic function
{

width = a;
height = b;

}
};

C++ virtual function is a
member function of a class,
whose functionality can be
over-ridden in its derived
classes. Virtual functions are
usually defined with a minimal
functionality.

Pure virtual functions are left
without implementation. Any
class that has at least one
pure virtual function is called
an abstract base class. You
cannot create instances
(objects) of abstract base
classes.

virtual double getArea() = 0;

Programming with C++140

class TCircle:public TShape
{
private:

double radius;
public:

double getArea() //polymorphic function
{

return 3.14*radius*radius;
}
void set(double r) //polymorphic function
{

radius = r;
}

};

int main()
{

TRectangle rec; int a, b;
cout <<"Sides of the rectangle?"<<endl;
cin >> a>> b;
rec.set(a, b);
cout<<"Area of the rectangle is "<<rec.getArea()<<endl;

TTriangle triangle;
cout <<"Base and height of the triangle?"<<endl;
cin >> a >> b;
triangle.set(a, b);
cout<<"Area of the triangle is "<<triangle.getArea()<<endl;

TCircle circle; double radius;
cout <<"Radius of the circle:?"<<endl;
cin >> radius;
circle.set(radius);
cout<<"Area of the circle is "<<circle.getArea()<<endl;

system("Pause"); return 0;
}

Sides of the rectangle?
3 5
Area of the rectangle is 15
Base and height of the triangle?
7 3
Area of the triangle is 10.5
Radius of the circle:?
1.3
Area of the circle is 5.3066
Press any key to continue . . .

141Object-Oriented Programming

Exercise: Shapes

Modify the program above to calculate the perimeters of a rectangle, a
triangle and the circumference of a circle in addition of their areas.

Operator Overloading
Operator overloading is a specific case of polymorphism in which some or all of
operators like <, +, =, or == have different implementations depending on the
types of their arguments. Usually user-defined types require operator overloading.
An overloaded operator is called an operator function. You declare an operator
function with the keyword operator preceding the operator.

Many STL containers (set, map) and algorithms such as sort, works only after
overloading less than (‘<’) operator with user-defined types.

Overloading Equal, Assignment, and Smaller Than Operators

The following program demonstrates how to overloaded ‘==’, ‘=’, and ‘<’
operators with in the class TPoint. Equal and smaller than operators return a boolean
value whereas, an assignment operator returns an object.

/*
PROG: c7_07operator.cpp
Operator overloading
*/
#include<iostream>
#include<string>
using namespace std;

class TPoint
{
private:

int x, y;
public:

TPoint (){x=0; y=0;}
void set(int xx, int yy)
{

x = xx; y = yy;
}
TPoint& operator = (const TPoint&);
bool operator == (const TPoint&);
bool operator < (const TPoint&);
void print()
{

cout <<x<<" "<<y<<endl;
}

};

The Standard Template
Library, or STL, is a C++
library of container classes
(vector, list, stack, queue, set,
map etc), and algorithms
(sort, merge, binary search,
swap, min, max, next
permutation etc).

Many C++ programmers
prefer friend functions for
operator overloading. Friend
functions are functions
defined outside a class (ie, not
member functions), but which
the class declares to be
friends so that they can
access the class's private
members.

class TPoint
{
friend bool operator<
(const TPoint&, const
TPoint&);

private:
int x, y;

public:
.
.
.

};
bool operator<(const
TPoint& p1, const
TPoint& p2)
{

return (p1.x<p2.x ||
(p1.x==p2.x &&

p2.y<p2.y));
}
.
.
.

Programming with C++142

TPoint& TPoint::operator =(const TPoint& p2)
{

x = p2.x;
y = p2.y;
return *this;

}
bool TPoint::operator ==(const TPoint& p2)
{

return (x==p2.x && y==p2.y);
}
bool TPoint::operator <(const TPoint& p2)
{

return (x<p2.x || (x==p2.x && y<p2.y));
}

int main()
{

TPoint p1, p2;
p2.print(); //prints “0 0”
p1.set(1, 2); //p1 gets (1,2)
cout<< (p2<p1) <<endl; //prints “1”, that is true
p2 = p1; //p2 gets p1, that is (1, 2)
p2.print(); //prints “1, 2”
if (p1==p2)

cout<<"duplicated points."<<endl;
cout<< (p1<p2) <<endl; //prints “0”, that is false
system("pause"); return 0;

}

0 0
1
1 2
duplicated points.
0
Press any key to continue . . .

Example: Sorting the Points

Make a program that randomly generates coordinates (x, y) of some points on
the plane and prints the points starting from the most left-button point and
ending with the right-up point.

STL offers some common containers and algorithms. Sorting some items is one
of the most used algorithm. STL sort algorithm sorts the elements of a vector in
a range.

The keyword this represents
a pointer to the object itself.

143Object-Oriented Programming

The following program generates some random points, keeps them in a
vector, sorts the points in the vector and prints the vector before and after the
sorting process.

The sorting algorithm needs to compare the items (points). The ‘<’ operator
must be defined for the comparison.

//PROG: c7_08sorting.cpp
#include<iostream>
#include<string>
#include<vector>
#include<algorithm> //for sorting algorithm
#include<time.h> //for srand and rand functions
using namespace std;

class TPoint
{
private:

int x, y;
public:

TPoint (){x=0; y=0;}
void set(int xx, int yy)
{

x = xx; y = yy;
}
//sort algorithm works only after defining the ‘<’ operator.
bool operator < (const TPoint&);
void print()
{

cout <<"("<<x<<", "<<y<<") "<<endl;
}

};
bool TPoint::operator <(const TPoint& p2)
{

return (x<p2.x || (x==p2.x && y<p2.y));
}

//TPointVector is a user-defined type
typedef vector<TPoint> TPointVector;

//pass a reference to modify the vector
void generatePoints(TPointVector &);
//pass a reference to save space
void printVector(TPointVector &);

int main()
{

TPointVector points;
int n;
cout<<"How many points? ";
cin >> n;

C++ allows the definition of
user-defined types based on
other existing data types. You
can define your own types
using the keyword typedef.

typedef existing_type
new_type_name;

Programming with C++144

points.resize(n); //size of the points has been set to n
generatePoints(points);
cout<<"Original points:"<<endl;
printVector(points);
sort(points.begin(),points.end()); //sort the vector points
cout<<"After sorting the points:"<<endl;
printVector(points);
system("pause"); return 0;

}

void generatePoints(TPointVector& points)
/*
Generate random points whose coordinates
are between 0 and 99.
*/
{

srand (time(NULL)); //Initialize random number generator
for (int i=0; i<points.size(); i++)

points[i].set(rand()%100, rand()%100);
};

void printVector(TPointVector& points)
//Print all the points in the vector points
{

for (int i=0; i<points.size(); i++)
points[i].print();

cout<<endl;
}

How many points? 5
Original points:
(68, 63)
(26, 86)
(22, 90)
(14, 27)
(27, 89)

After sorting the points:
(14, 27)
(22, 90)
(26, 86)
(27, 89)
(68, 63)

Press any key to continue . . .

srand() function initializes the
random number generator so
that rand() function generates
a different succession of
results in the subsequent
calls.

Begin returns an iterator
(pointer to an item) referring to
the first element in the vector
container and end returns an
iterator referring to the past-
the-end element in the vector
container.

145Object-Oriented Programming

An object is a software bundle of related data (variables) and methods (functions). In Object-Oriented
Programming, software objects are often used to model the real-world objects that you find in everyday life. A
class is a blueprint or prototype from which objects are created.

Encapsulation, inheritance and polymorphism are three fundamental principles of OOP (Object Oriented
Programming). Encapsulation is the grouping of data and the code that manipulates it into a single object.
Inheritance is a way to form new classes using pre-defined objects or classes where new ones simply take over
old ones' implementations and characteristics. It is intended to help the re-use of existing code with little or no
modification. Polymorphism allows objects to be represented in multiple forms. Even though classes are
derived or inherited from the same parent class, each derived class will have its own behavior.

Class members and member functions are not open to other classes. Private, protected and public sections
determine the accessibility level of class members and methods by other classes. Public section is accessible
by all other classes, protected section is accessible by derived (child) classes, and private section is not
accessible by other classes. There is no accessibility restriction for friend functions and friend classes.

It's can be useful to define a meaning for an existing operator for objects of a new class. This technique is called
operator overloading. The purpose of operator overloading is to make programs clearer by using conventional
meanings for ‘<’, ‘==’, +, etc.

C++'s Standard Template Library (STL), standardized in 1999, solves many standard data structure and
algorithm problems.

SUMMARY

REVIEW QUESTIONS

1. Which programming technique is the most
comprehensive?
a) sequential b) modular
c) object-oriented d) classical

2. Members of struct by default are __________, and
member of class by default are __________.
a) public - private b) private - public
c) public - public d) private - private

3. __________ members of a class are accessible
by other classes, however __________ members
of a class are not accessible by any other

classes?
a) public - private
b) public - protected
c) private - protected
d) private - public

4. What is the output of the following program?
#include <iostream>
using namespace std;
class myClass
{
private:

int a, b;
public:

myClass(){a=1; b=2;}
void set(int aa, int bb)

Programming with C++146

{ a=aa; b=bb;}
void print()

{ cout <<a<<" "<<b<<endl;}
};
int main()
{

myClass x;
x.print();
x.set(5,6);
x.print();

return 0;
}

5. What is wrong in the following code?
class myClass
{
private:

int a, b;
public:

myClass(){a=1; b=2;}
.
.
.

};

int main()
{

myClass x = {3, 5};
.
.
.

};

6. What is the output of the following program?
#include <iostream>
using namespace std;
class myClass
{
private:

int a, b;
public:

void set(int x)
{ a=b=x;}

void set(int x, int y)
{ a=x; b=y;}
void print()
{cout <<a<<" "<<b<<endl;}

};
int main()
{

myClass x;
x.set(5);
x.print();
x.set(3, 9);
x.print();
return 0;

}

7. What is the output of the following program?
#include <iostream>
using namespace std;
class baseClass
{
protected:

int a, b;
public:

void set(int x, int y)
{ a=x; b=y;}
virtual double process(){};

};

class derivedClass1:public baseClass
{
public:

double process()
{ return a+b;}

};

class derivedClass2:public baseClass
{
public:

double process()
{ return a*b;}

};

int main()
{

derivedClass1 a;
derivedClass2 b;

147Object-Oriented Programming

a.set(3,5);
b.set(3,5);
cout<<a.process()<<endl;
cout<<b.process()<<endl;
return 0;

}

8. What is the output of the following program?
#include <iostream>
using namespace std;
class TPoint
{
private:

int x,y;
public:

TPoint& operator +(const TPoint&);
TPoint& operator -(const TPoint&);
bool operator <(const TPoint&);
void set(int xx, int yy)

{ x=xx; y=yy;}
void print()

{cout<<x<<" "<<y<<endl;}
};
TPoint& TPoint::operator+
(const TPoint& p2)
{

x += p2.x;
y += p2.y;
return *this;

};
TPoint& TPoint::operator-
(const TPoint& p2)
{

x -= p2.x;
y -= p2.y;
return *this;

};
bool TPoint::operator<(const TPoint& p2)
{

return (x+y)>(p2.x + p2.y);
};
int main()
{

TPoint p1, p2;

p1.set(3,5);
p2.set(4,2);
if (p1<p2)

p1 = p1+p2;
else

p1 = p1-p2;
p1.print();
p2.print();
return 0;

}

9. What is the output of the following program?
(“recFunction” is a recursive function. Recursive
functions call themselves.)
#include <iostream>
using namespace std;
class TMystery
{
public:

void recFunction (int);
};
void TMystery::recFunction(int x)
{

if (x>0)
{

cout<<x<<" ";
recFunction(x-1);

}
}

int main()
{

TMystery c;
c.recFunction(10);
system("pause");
return 0;

}

Programming with C++148

1. (Chess) Chess is known as one of the most famous and oldest
mental games. It is played between two players. One of the goals of
early computer scientists was to create a chess-playing machine,
and today's chess is deeply influenced by the abilities of current
chess programs. In 1997, a match between Garry Kasparov, then
World Champion, and IBM's Deep Blue chess program proved for
the first time that computers are able to beat even the strongest
human players.

You are going to make a part of a chess program. Suppose that you
are in the middle of a chess game and you don’t want to make a big
mistake not to lose the game. Make a program that gets all the
pieces and their positions on a chess-board and tells you all your pieces that are threatened when it is
your turn to play.

Input

The first line of the input contains an integer N (2 <= N <= 32) that represents the number of all the
pieces on the board. Each of the following N lines contains three letters and an integer: The first letter
denotes the color of a piece and the second letter denotes the type of a piece. The third letter and the
integer denotes the position of a piece. The color is ‘B’ (Black) or ‘W’ (White) and the type is ‘S’ (Shah or
King), W (Wazir or Queen), B (Bishop), K (Knight), R (Rook), and P (Pawn). Your color is white.

Output

The output contains positions and types of your pieces that are threatened by your opponent.

PROGRAMMING PROBLEMS

24
B R A 8
B W A 6
W P A 3
W R A 1
W S E 1
W K G 1
W R H 1
W P H 3
B P H 7
B R H 8
B K G 8
B S E 8

B P G 7
W P G 4
B K G 3
W P F 3
W P E 3
B P B 7
W P B 4
W W C 2
W K D 4
B P C 6
B B D 6
B P F 7

S E 1
P A 3
P B 4
R H 1

chess.in chess.out

Chapter 1

1. I am
learning C++

2. 1 23 5
3. 1 2 3

5 -1 3
0 1 2

4. unsigned short, string,char,
bool, unsigned short, float, int

Chapter 2

1. if, if/else, switch, ?
2. if (a>b)

c=a;
else

c=b;
3. 21
4. c

Chapter 3

1. b
2. d
3. a
4. c
5. c
6. D C B A

D C B
D C
D

7. 0 2 16

Chapter 4

1. b
2. a
3. c
4. 1 3

4 8

5. 1 3
3 2
1 3

6. 5 11
7. 4 5
8. Reads three integers, and
then prints them sorted in
increasing order.
9. Reads an integer, and then
prints its digits in reverse order,
separated with a space.
10. Calculates and displays sum
of the prime numbers between 1
and N.
11. Reads two integers (B and P),
and then calculates and prints B
to the power P.
12. This program prints the
Fibonacci numbers smaller than
or equal to N, instead of the first N
Fibonacci numbers.
13. The go function returns the
least significant digit before
cutting it form the number. Thus,
N remains the same and the while
structure becomes an infinite
loop.

Chapter 5

1. a
2. c
3. 20
4. 5
5. 4
6. 14

15
7. Generates two random binary
vectors with K elements. And
prints out, in how many tries the

program generated the vectors.
8. Reads a line of text, and then
converts the lower case letters to
upper case, and upper case
letters to lower case in the text.

Chapter 6

1. c
2. b
3. a
4. b

Chapter 7

1. c
2. a
3. a
4. 1 2

5 6
5. Objects of myClass had
already been initialized in the
constructed function. Attempting
to initialize the object x in the
declaration causes an error.
6. 5 5

3 9
7. 8

15
8. 7 7

4 2
9. 10 9 8 7 6 5 4 3 2 1

^= 9

_USE_MATH_DEFINES 13
-= 9

! 27, 31, 36

!= 24, 35

? : 31

. 112, 123, 126

*= 9

/= 9

&& 27, 31, 36

&= 9

%= 9

+= 9

< 24, 35

<<= 9

<= 24, 35

<algorithm> 95, 96, 98, 101

<cmath> 66

<fstream> 16
<functional> 98

<iostream> 15
<math> 66

<string> 15, 18, 100

<vector> 86

== 24, 35

> 24, 35

>= 24, 35

>>= 9

|= 9

|| 27, 31, 36

A
abs() 65

abstract base class 139

accessing array elements 86

actual parameters 71

addition 9, 10, 22

address operator (&) 72

Alfred Vail 109

algebra 6

algorithm 6, 18

algorithms 104

aligning text 109

AlKharizmi 6

alleles 59

and 27, 36

and operator 31

area 78

area of a triangle 66

arguments 71

arithmetic 8

arithmetic operators 9

array 104

array declaration 86

array of structs 120

arrays 86, 110

arrow 22

ASCII 13, 18

assign 88, 104

assignment 9

at 88, 104

attributes 130

average 25

B
base class 136, 137

begin 88, 104, 144

behaviours 130

binary search 97, 104, 141

binary searching 95, 96

binary to decimal 50

birthdays 128

bitwise 9

BMP 21

bool 11

break 30, 53, 56

bubble sort 100, 110

C
cartesian plane 127

ceil() 65

char 11

character 100

character encoding 13

character recognizer 34

character variables 12

chess 148

cin 15, 18, 100

circle 13

circumference 13

class 130

class average 62

class member access 130

classes 130

close() 17

cmath 13

collecting coins 88

combination 83

computer program 6, 18

condition 39, 47

conditional 9

conditional operator 24, 31

connector 22

consanguineous 59

const 13

constant 18

constructor 135

continue 53, 56

coordinates 120

counter 39, 40

counter-controlled 43, 56

counting sort 100

cout 14, 15, 18, 100

D
data compressor 107

data hiding 131, 136

data structure 86

date format 133

decimal to binary 51

decision 22, 24

decision structures 31, 38

decrement 9

decrement factor 39

decrement operator 40

default 30

definite repetition 43

derived class 136, 137

destructors 135

dice 67

digits 20

distance 127, 133

division 9, 10

do while 38

do/while 45, 56

dominator 124

dot operator 112, 123, 126

double 11, 48

double quotation 100

doubleIt() 72

dynamic arrays 86

E
e 65

EBCDIC 13

encapsulation 136, 145

end 88, 104, 144

end-user 6

equal 24, 35

Euler's number 65

exp() 65

F
factorial 48, 83

false 11, 96

FCPRO 21

Fibonacci series 49

field name 112

File 18

final value 39

find 104

find_first_not_of() 101

find_first_of() 101

find_last_not_of() 101

find_last_of() 101

find() 95, 101

first() 76

float 11

floating-point variables 11

floor() 65

flow control 38

flow Line 22

flowchart 7, 20

football tournament 108

for 38, 47, 56

formal parameters 71

fractional givision 22

friend classes 145

friend functions 141

function 64, 79

function overloading 77, 79

function prototype 69

G
geometric means 83

getline() 100, 113

global 79

global variables 74

greater 24

greater or eEqual 24

greater or equal 35

greater<int>() 98

H
H. Coxeter 107

H2O 41

Heron’s formula. 66

hierarchical structures 114

highway 84

hypotenuse 68

I
if 24

if/else 24, 25, 31

ifstream() 16, 18

include 7

increment 9

increment factor 39

increment operator 40

increment or decrement 47

indefinite repetition 44

infinitive loops 39

inheritance 136, 137, 145

initial value 39

initialization 16

initializations 47

inner loop 56

input 8, 22

Input 6

input parameters 67

insert 88, 104

insertion sort 100

int 11

int main() 67

intArray 88

integer division 22

integer variables 11

intIt 88

ISBN 126

J
joining 22

jpeg 107

L
lattice multiplication 108

leap year 28

length() 101

letter 27

letter pairs 124

library 126

lifetime 74

line intersection) 83

linear earching 95

linear search 104

linear searching 96

local 74, 79

Local variables 74

log() 65

log10() 65

logarithm 65

logical 9

logical operators 27, 31, 36

logical variables 12

long int 11

long long int 11

long multiplication 108

longest distance 135

loops 38

M
magic square 107

main 18

makeSum 68, 71, 73

marienbad game 60

math.h 34

matrix 90

max 141

max() 77

maximum 52

member array 122

members 123

menu-driven program 45

merge 141

merge sort 100

merging vectors 89

methods 130

min 141

mined area 84

mini calculator 34

module 130

modulus 9, 10, 22

molecules 41

month 30, 90

morse code 109

multidimensional arrays 90

multiple lines 7

multiplication 9, 10, 22

N
name of the function 67

natural logarithm 65

nested loop 54, 56

nesting 56

next permutation 141

nim 60

not 27, 31

Not 36

not equal 24, 35

not operator 31

numerator 124

O
object 145

object-oriented programming
130, 145

objects 130

odd or even 26

ofstream() 16, 18

OOP 130

operator function 141

operator overloading 141, 145

operators 18

or 27, 36

or operator 31

outer loop 56

output 6, 22

overloading 136

overloading functions 77

override 136

overriding 136

P
palindrome 102

parameter 70

Parameters 71, 74

parentheses 10

pascal triangle 83

pass by reference 71, 72, 73, 79

pass by value 71, 79

passing arguments 70

perfect numbers 55

PI 13

pigeon hole sort 100

pointer 95

dereferencing operator 95

points 120

polymorphism 136, 138, 145

positive 35

post-conditional 56

Post-conditional Loop 62

pow() 48, 65, 66, 68

pre-conditional 39, 56

Pre-conditional Loop 61

pre-defined c++ functions 65

precedence 10

private 130, 145

private class members 131

process 6, 22

program flow 64

programmer 6

programming 6

programming language 18

protected 130, 145

prototypes 131

public 130, 145

public inheritance 137

public member functions 131

public members 137

pure virtual functions 139

push_back 88, 104

Pythagoras 68

Pythagorean theorem 68

Q
quadratic equation 34

quick sort 100

R
RAND_MAX 65

rand() 65, 144

rational numbers 124

rectangle 11

relational 9

relational and equality operators
24

repetition structures 38, 56

resize 88, 104

return 0; 67

return statement 69, 70

return value type 67

reverse 88, 104

riend functions 145

robot 125

round number 58

rreater 35

S
Samuel Morse 109

school database 122

scope 74

scope and lifetime 79

searching 95, 104

second() 76

seconds 75

selection sort 99

sentinel-controlled 43, 44, 56

sequential searching 95

shapes 141

shift operators 9

short int 11

sign 26

single quotation 100

size 88, 104

sizeof() 12

sizes of variables 12

smaller 24, 35

smaller or equal 24, 35

software 6

software re-usability 64

sort 104, 141

sorted 94

sorting algorithms 100

sorting arrays 98

sorting the points 142

sqrt() 34, 65, 66, 68

srand() 144

Standard Template Library 88,
104, 141, 145

statements 47

static array 104

static arrays 86

static local variables 76, 79

STL 88, 104, 141, 145

string 18, 100

string class 100, 104

string concatenation 9

strings 110

struct 130

struct of structs 115

structs 112

structure 123

structures 130

structures tree 114

subtotal 92

subtraction 9, 10, 22

sum 35, 124

swap 141

swap function 73

swapping 20

switch 24, 29, 30, 31

syntax 47

system(“cls”) 116

T
TDate 131

temperature 90

terminal 22

text Files 16

text justifying 109

the conditional operator 28

this 142

toupper() 20

tower of happiness 59

TPerson 112

traffic lights 31

train 42

transpose matrix 92

triangle 36

true 11, 96

truth in C++ 25

typedef 93, 143

U
unction prototype 131

unsigned int 11

unsigned long int 11

unsigned short int 11

using namespace 7

V
variable 8, ,11, 18, 74

vector class 86, 104

vectors 98

virtual functions 138

void 69

W
while loop 38, 39, 56

Win32 Console applications 21

wonder primes 58

X
x to the power of y 48

Z
zip 107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslonPro-Bold
 /ACaslonPro-BoldItalic
 /ACaslonPro-Italic
 /ACaslonPro-Regular
 /ACaslonPro-Semibold
 /ACaslonPro-SemiboldItalic
 /AGaramondPro-Bold
 /AGaramondPro-BoldItalic
 /AGaramondPro-Italic
 /AGaramondPro-Regular
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Aharoni-Bold
 /Algerian
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /ArabicTypesetting
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArnoPro-Bold
 /ArnoPro-BoldCaption
 /ArnoPro-BoldDisplay
 /ArnoPro-BoldItalic
 /ArnoPro-BoldItalicCaption
 /ArnoPro-BoldItalicDisplay
 /ArnoPro-BoldItalicSmText
 /ArnoPro-BoldItalicSubhead
 /ArnoPro-BoldSmText
 /ArnoPro-BoldSubhead
 /ArnoPro-Caption
 /ArnoPro-Display
 /ArnoPro-Italic
 /ArnoPro-ItalicCaption
 /ArnoPro-ItalicDisplay
 /ArnoPro-ItalicSmText
 /ArnoPro-ItalicSubhead
 /ArnoPro-LightDisplay
 /ArnoPro-LightItalicDisplay
 /ArnoPro-Regular
 /ArnoPro-Smbd
 /ArnoPro-SmbdCaption
 /ArnoPro-SmbdDisplay
 /ArnoPro-SmbdItalic
 /ArnoPro-SmbdItalicCaption
 /ArnoPro-SmbdItalicDisplay
 /ArnoPro-SmbdItalicSmText
 /ArnoPro-SmbdItalicSubhead
 /ArnoPro-SmbdSmText
 /ArnoPro-SmbdSubhead
 /ArnoPro-SmText
 /ArnoPro-Subhead
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BickhamScriptPro-Bold
 /BickhamScriptPro-Regular
 /BickhamScriptPro-Semibold
 /BirchStd
 /BlackadderITC-Regular
 /BlackoakStd
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScriptMT
 /BrushScriptStd
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ChaparralPro-Bold
 /ChaparralPro-BoldIt
 /ChaparralPro-Italic
 /ChaparralPro-Regular
 /CharlemagneStd-Bold
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlackStd
 /CooperBlackStd-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /EccentricStd
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /GaramondPremrPro
 /GaramondPremrPro-It
 /GaramondPremrPro-Smbd
 /GaramondPremrPro-SmbdIt
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GiddyupStd
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gisha
 /Gisha-Bold
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboStd
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi
 /Kalinga
 /Kartika
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KozGoPro-Bold
 /KozGoPro-ExtraLight
 /KozGoPro-Heavy
 /KozGoPro-Light
 /KozGoPro-Medium
 /KozGoPro-Regular
 /KozMinPro-Bold
 /KozMinPro-ExtraLight
 /KozMinPro-Heavy
 /KozMinPro-Light
 /KozMinPro-Medium
 /KozMinPro-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /Leelawadee
 /Leelawadee-Bold
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LithosPro-Black
 /LithosPro-Regular
 /LT_Futuris
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Marlett
 /MaturaMTScriptCapitals
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MesquiteStd
 /MicrogrammaD-BoldExte
 /MicrogrammaD-MediExte
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftSansSerif
 /MicrosoftUighur
 /MicrosoftYaHei
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /MinionPro-Bold
 /MinionPro-BoldCn
 /MinionPro-BoldCnIt
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Medium
 /MinionPro-MediumIt
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /Mistral
 /Modern-Regular
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackCond
 /MyriadPro-BlackCondIt
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldCond
 /MyriadPro-BoldCondIt
 /MyriadPro-BoldIt
 /MyriadPro-Cond
 /MyriadPro-CondIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightCond
 /MyriadPro-LightCondIt
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldCond
 /MyriadPro-SemiboldCondIt
 /MyriadPro-SemiboldIt
 /MyriadWebPro
 /MyriadWebPro-Bold
 /MyriadWebPro-Condensed
 /MyriadWebPro-CondensedItalic
 /MyriadWebPro-Italic
 /Narkisim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /NuevaStd-BoldCond
 /NuevaStd-BoldCondItalic
 /NuevaStd-Cond
 /NuevaStd-CondItalic
 /Nyala-Regular
 /OCRAExtended
 /OCRAStd
 /OldEnglishTextMT
 /Onyx
 /OratorStd
 /OratorStd-Slanted
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlantagenetCherokee
 /Playbill
 /PMingLiU
 /PMingLiU-ExtB
 /PoorRichard-Regular
 /PoplarStd
 /PrestigeEliteStd-Bd
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RosewoodStd-Regular
 /ScriptMTBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /SnapITC-Regular
 /Stencil
 /StencilStd
 /Swiss721BT-Black
 /Swiss721BT-BlackItalic
 /Swiss721BT-Bold
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-Italic
 /Swiss721BT-Light
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanExtended
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TektonPro-Bold
 /TektonPro-BoldCond
 /TektonPro-BoldExt
 /TektonPro-BoldObl
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZurichCalligraphicItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

